CS7800: Advanced Algorithms

Soheil Behnezhad

Linear Programming (Part I)

Basics

Examples

Slides credit: Kevin Wayne

Linear Programming

• Optimize a linear function subject to linear inequalities.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

- Generalizes shortest paths, max flow, assignment problems, matching, multicommodity flow, MST, ...
- LPs are used extensively in:
 - Designing poly-time algorithms.
 - Designing/analyzing approximation algorithms.

A sweet-spot between generality and solvability

Brewery Problem

- Small brewery produces ale and beer.
- Production limited by scarce resources: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

- How can brewer maximize profits?
 - Devote all resources to ale: 34 barrels of ale => \$442
 - Devote all resources to beer: 32 barrels of beer => \$736
 - 7.5 barrels of ale, 29.5 barrels of beer
 - 12 barrels of ale, 28 barrels of beer => 800

=> \$776

Brewery Problem

Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	

Standard Form

- "Standard form" of an LP.
 - Input: real numbers a_{ij}, c_j, b_i .
 - Output: real numbers x_i .
 - n = # of decision variables, m = # of constraints.
 - Maximize linear objective function subject to linear constraints.

(P) max
$$\sum_{j=1}^{n} c_j x_j$$

s.t.
$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad 1 \le i \le m$$
$$x_j \ge 0 \quad 1 \le j \le n$$

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

- Linear: No x^2 , xy, $\arccos(x)$, etc.
- Programming: planning (predates computer programming).

Brewery: Converting to Standard Form

13A	+	23 <i>B</i>		
5 <i>A</i>	+	15 <i>B</i>	≤	480
4A	+	4 <i>B</i>	≤	160
35 <i>A</i>	+	20 <i>B</i>	≤	1190
A	,	В	≥	0
	13A 5A 4A 35A A	13A + 5A + 4A + 35A + A ,	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Brewery LP

LP Standard form

- How do we convert the brewery LP to standard form?
 - Add a slack variable for each inequality.
 - Now a 5-dimensional problem.

Converting to Standard Form

• It's easy to convert an LP to standard form.

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

LP Standard form

- \leq to =: $x + 2y 3z \leq 17 \Rightarrow x + 2y 3z + s = 17, s \geq 0$
- \geq to =: $x + 2y 3z \geq 17 \Rightarrow x + 2y 3z s = 17, s \geq 0$
- Min to max: min $x + 2y 3z \Rightarrow \max -x 2y + 3z$
- Unrestricted to nonnegative: x unrestricted $\Rightarrow x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$

Geometry of LPs: Back to Brewery

Geometry of LPs: Back to Brewery

Geometry of LPs: Back to Brewery

• Brewery problem observation: Regardless of objective function coefficients, an optimal solution occurs at a vertex.

Convexity

- Convex set: If two points x and y are in the set, then so is $\lambda x + (1 \lambda)y$ for any $0 \le \lambda \le 1$.
- Vertex: A point x in the set that can't be written as a strict convex combination of two distinct points in the set.

• Observation: The feasible region of an LP is a convex set.

A vertex is optimal

• Theorem: If there is an optimal solution to (P) then there is one that is a vertex.

(P) max $c^T x$ s.t. Ax = b $x \ge 0$

 Intuition: Start from an optimal solution, move in a direction that does not decrease the objective value (one such direction must exist) until you reach a boundary. Repeat.

Examples: One Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and two vertices $s, t \in V$.
- Output: Length of the shortest path from s to t.

Examples: One Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and two vertices $s, t \in V$.
- Output: Length of the shortest path from s to t.

maximize	dist(t)	
subject to	dist(s) = 0	
	$dist(v) - dist(u) \le \ell(u \rightarrow v)$	for every edge $u \rightarrow v$

- This LP is feasible iff the graph has no negative cycles.
- The shortest path distances form a feasible solution to the LP.
- Counterintuitively, this maximization LP solves a minimization problem.
- Is the LP solution unique?

Examples: One Shortest Path, Take two

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \to R$ and two vertices $s, t \in V$.
- Output: Length of the shortest path from s to t.

minimize
$$\sum_{u \to v} \ell(u \to v) \cdot x(u \to v)$$

subject to
$$\sum_{u} x(u \to t) - \sum_{w} x(t \to w) = 1$$
$$\sum_{u} x(u \to v) - \sum_{w} x(v \to w) = 0 \quad \text{for every vertex } v \neq s, t$$
$$x(u \to v) \ge 0 \quad \text{for every edge } u \to v$$

- Instead of variables on the vertices, this LP variables $x(u \rightarrow v)$ that intuitively indicate which edges belong to the shortest path from s to t.
- This LP has an integral solution. This is a special property of this specific LP. Generally, LPs with integer coefficients don't necessarily have integral solutions.

Examples: Single Source Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and vertex $s \in V$.
- Output: Length of the shortest path from *s* to every other vertex.

Examples: Single Source Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and vertex $s \in V$.
- Output: Length of the shortest path from *s* to every other vertex.
- The problem with our previous maximization LP for one shortest path is that it maximizes dist(t) and so the distance to vertices not on the path from s to t could be incorrect.
- The following modification to the LP makes sure that all distances are right:

maximize
$$\sum_{v} dist(v)$$

subject to
$$dist(s) = 0$$

$$dist(v) - dist(u) \le \ell(u \rightarrow v) \text{ for every edge } u \rightarrow v$$

• Again, we are using maximization to solve a minimization problem!

Examples: Single Source Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and vertex $s \in V$.
- Output: Length of the shortest path from *s* to every other vertex.
- We can also modify the second LP to find a shortest path tree

minimize
$$\sum_{u \to v} \ell(u \to v) \cdot x(u \to v)$$

subject to
$$\sum_{u} x(u \to v) - \sum_{w} x(v \to w) = 1 \quad \text{for every vertex } v \neq s$$

$$x(u \to v) \ge 0 \quad \text{for every edge } u \to v$$

Examples: Max Flow

- Input: Weighted directed graph G=(V, E), non-negative capacity function $c: E \rightarrow R^{\geq 0}$ and special vertices $s, t \in V$.
- Output: Value of maximum flow from s to v.

Examples: Max Flow

- Input: Weighted directed graph G=(V, E), non-negative capacity function $c: E \to R^{\geq 0}$ and special vertices $s, t \in V$.
- Output: Value of maximum flow from s to v.

maximize
$$\sum_{w} f(s \to w) - \sum_{u} f(u \to s)$$

subject to
$$\sum_{w} f(v \to w) - \sum_{u} f(u \to v) = 0 \qquad \text{for every vertex } v \neq s, t$$
$$f(u \to v) \leq c(u \to v) \qquad \text{for every edge } u \to v$$
$$f(u \to v) \geq 0 \qquad \text{for every edge } u \to v$$

Examples: Min Cut

- Input: Weighted directed graph G=(V, E), non-negative capacity function $c: E \rightarrow R^{\geq 0}$ and special vertices $s, t \in V$.
- Output: Value of the s, t cut with minimum capacity.

Examples: Min Cut

- Input: Weighted directed graph G=(V, E), non-negative capacity function $c: E \to R^{\geq 0}$ and special vertices $s, t \in V$.
- Output: Value of the (s, t)-cut with minimum capacity.

minimize
$$\sum_{u \to v} c(u \to v) \cdot x(u \to v)$$

subject to $x(u \to v) + S(v) - S(u) \ge 0$ for every edge $u \to v$
 $x(u \to v) \ge 0$ for every edge $u \to v$
 $S(s) = 1$
 $S(t) = 0$

Examples: Maximum Bipartite Matching

- Input: Unweighted undirected bipartite graph G=(V, E)
- Output: Size of maximum matching in G.

Examples: Maximum Non-Bipartite Matching

- Input: Unweighted undirected general graph G=(V, E)
- Output: Size of maximum matching in G.