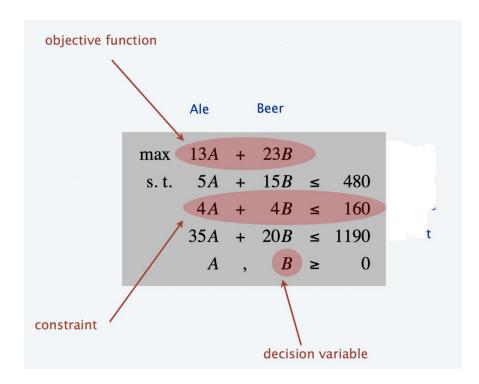
CS7800: Advanced Algorithms

Soheil Behnezhad

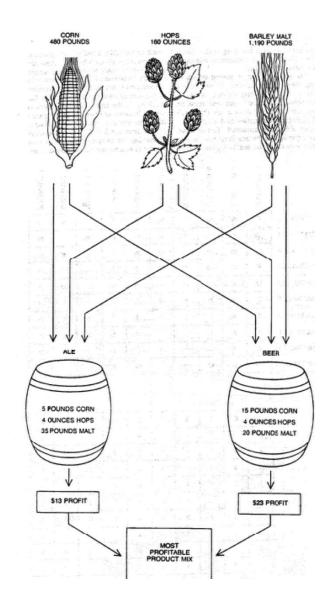
Linear Programming (Part 2) Duality

Slides credit: Kevin Wayne

Recall: The Brewery LP



Beverage	Corn (pounds)	Hops (ounces)	Malt (pounds)	Profit (\$)
Ale (barrel)	5	4	35	13
Beer (barrel)	15	4	20	23
constraint	480	160	1190	



Duality

"Primal" problem:

Goal 1: Find a lower bound on optimal value.

Easy: Any feasible solution provides one.

- $(A,B) = (34,0) \implies z^* \ge 442$
- $(A,B) = (0,32) \Rightarrow z^* \ge 736$
- $(A, B) = (7.5, 29.5) \Rightarrow z^* \ge 776$
- $(A, B) = (12, 28) \implies z^* \ge 800$

Duality

"Primal" problem:

(P)	max	13A	+	23 <i>B</i>		
	s. t.	5 <i>A</i>	+	15 <i>B</i>	≤	480
		4A	+	4 <i>B</i>	≤	160
		35 <i>A</i>	+	20 <i>B</i>	≤	1190
		A	,	В	≥	0

Goal 2: Find an upper bound on optimal value.

Ex 1: Multiply 2nd inequality by 6: $24A + 24B \le 960$. This gives

 $z^* = 13A + 23B \le 24A + 24B \le 960.$

Ex 2: Add two times 1st inequality to 2nd inequality:

 $z^* = 13A + 23B \le 14A + 34B \le 1120.$

Duality

"Primal" problem:

(P)	max	13A	+	23 <i>B</i>		
	s.t.	5 <i>A</i>	+	15 <i>B</i>	≤	480
		4A	+	4 <i>B</i>	≤	160
		35 <i>A</i>	+	20 <i>B</i>	≤	1190
		Α	,	В	≥	0

Goal 2: Find an upper bound on optimal value.

Ex 3: Add one time 1st inequality to two times 2nd inequality:

 $z^* = 13A + 23B \le 13A + 23B \le 800.$

Recall lower bound: $(A, B) = (12, 28) \implies z^* \ge 800$ Combining upper and lower bounds: $z^* = 800$.

(P) max 13A + 23Bs.t. $5A + 15B \le 480$ $4A + 4B \le 160$ $35A + 20B \le 1190$ A, $B \ge 0$

- Let's try to generalize this idea...
- Idea: Add non-negative combination (*C*, *H*, *M*) of constraints s.t.

• But how do we find *C*, *H*, *M*?

(P) max 13A + 23Bs.t. $5A + 15B \le 480$ $4A + 4B \le 160$ $35A + 20B \le 1190$ A, $B \ge 0$

- Let's try to generalize this idea...
- Idea: Add non-negative combination (C, H, M) of constraints s.t.

- But how do we find *C*, *H*, *M*? By writing another LP... 🤯
- Dual: Find the best upper bound with constraint coefficients.

(D)	min	480 <i>C</i>	+	160 <i>H</i>	+	1190 <i>M</i>		
	s. t.	5 <i>C</i>	+	4H	+	35 <i>M</i>	≥	13
		15C	+	4H	+	20 <i>M</i>	≥	23
		С	,	H	,	M	≥	0

Duality: Economic Interpretation

• Brewer / primal: find optimal mix of beer and ale to maximize profit.

(P)	max	13A	+	23 <i>B</i>		
	s.t.	5 <i>A</i>	+	15 <i>B</i>	≤	480
		4A	+	4 <i>B</i>	≤	160
		35 <i>A</i>	+	20 <i>B</i>	≤	1190
		A	,	В	≥	0

- Entrepreneur / dual: buy each resource from brewer at min cost.
 - *C*, *H*, *M* : unit price for corn, hops, malt.
 - Brewer won't sell if 5C + 4H + 3M < 13.

(D)	min	480 <i>C</i>	+	160H	+	1190 <i>M</i>		
	s. t.	5 <i>C</i>	+	4H	+	35 <i>M</i>	≥	13
		15C	+	4H	+	20 <i>M</i>	≥	23
		С	,	H	,	M	≥	0

Duality: Basic Observations

• If the primal has *n* variables and *m* constraints, then the dual has *m* variables and *n* constraints.

(P)	max	13A	+	23 <i>B</i>		
	s.t.	5 <i>A</i>	+	15 <i>B</i>	≤	480
		4A	+	4 <i>B</i>	≤	160
		35 <i>A</i>	+	20 <i>B</i>	≤	1190
		A	,	В	≥	0

(D)	min	480 <i>C</i>	+	160H	+	1190 <i>M</i>		
	s.t.	5 <i>C</i>	+	4H	+	35 <i>M</i>	≥	13
		15C	+	4H	+	20 <i>M</i>	≥	23
		С	,	H	,	M	≥	0

Double dual

• Canonical form:

(P) $\max c^T x$ (D) $\min y^T b$ s.t. $Ax \leq b$ s.t. $A^T y \geq c$ $x \geq 0$ $y \geq 0$

- Property: The dual of the dual is the primal.
- Pf: Rewrite (D) as maximization in canonical form, take its dual.

(D')
$$\max -y^T b$$

s.t. $-A^T y \leq -c$
 $y \geq 0$
(DD) $\min -c^T z$
s.t. $-(A^T)^T z \geq -b$
 $z \geq 0$

The Dual Recipe

Primal (P)	maximize	minimize	Dual (D)
constraints	$a x = b_i$ $a x \le b$ $a x \ge b_i$	$y_i \text{ unrestricted} \\ y_i \ge 0 \\ y_i \le 0$	variables
variables	$x_j \ge 0$ $x_j \le 0$ unrestricted	$a^{T}y \ge c_{j}$ $a^{T}y \le c_{j}$ $a^{T}y = c_{j}$	constraints

• Pf: Rewrite in canonical form and take dual.

Strong Duality

 Theorem (Weak Duality): For any A, b, c if (P) and (D) are feasible, then max ≤ min.

(P) max
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

(D) $\min y^T b$ s.t. $A^T y \ge c$

 Theorem (Strong Duality): For any A, b, c if (P) and (D) are feasible, then max = min.

Examples: Single Source Shortest Path

- Input: Weighted directed graph G=(V, E), weight function $\ell: E \rightarrow R$ and vertex $s \in V$.
- Output: Length of the shortest path from *s* to every other vertex.

maximize
$$\sum_{v} dist(v)$$

subject to
$$dist(s) = 0$$

$$dist(v) - dist(u) \le \ell(u \rightarrow v) \text{ for every edge } u \rightarrow v$$

• What's the dual?