
Choosing Experts via Multiplicative Weights Update

April 10, 2023

� We continue the theme of �how do you optimize when the future is unknown
or even adversarial?�

1. Last week: Online algorithms (competitive analysis)

� Example: Ski rental, Online set cover.

2. Today (and next week): Minimizing regret

� Given a �xed set of �strategies� for some thing.

� Each day, you must choose a strategy but don't know which one is good.

� Goal: perform as good as the best strategy at time goes by.

1 Warm up: The 2-Action Setting

� There are n experts E .

� At day t, the following happen in order :

1. Every expert i predicts whether a stock price is �up� or �down�

2. The algorithm chooses �up� or �down�

3. Then, the adversary reveals the actual outcome.

� The actual outcome can depend on our choice today.

� De�ne the total loss LA as the total number of mistakes the algorithm makes.

1.1 Assume Perfect Expert

� Suppose there exists a perfect expert (never wrong).

� Consider this algorithm.

� The Halving algorithm:

� Consider all experts E ′ with no mistakes so far.

� Each round, follow the majority of E ′.

1



� What is the total lost?

Lemma 1.1. If there exists a perfect expert, then the Halving algorithm guarantees

LA ≤ log n.

� Every time we make a mistake, the size of E ′ reduces by a factor of 2.

� So we can make at most ⌈log2 n⌉ mistakes.

1.2 No Perfect Expert

� But what if there is no perfect expert?

� So... we will just compare our loss with the best expert.

� Let L⋆ be the total loss of the best expert (i.e. the number of mistakes made by the
best expert).

� Consider this algorithm.

� The Iterated Halving Algorithm:

� Divide the time into �epochs�

� In each epoch, run the halving algorithm:

* Keep track of all experts E ′ with no mistake in this epoch.

* When E ′ is empty, start a new epoch.

� Can you bound LA in term of L⋆?

Lemma 1.2. The Iterated Halving Algorithm guarantees

LA ≤ log(n) · L⋆ + log(n).

� Analysis:

� When we start a new epoch, all experts must make at least one mistake.

* L⋆ ≥ #epochs− 1

� For each epoch, we made at most log n mistakes.

* LA ≤ log n ·#epochs

� How much small can LA be compared to L⋆?

Exercise 1.3. Show an algorithm that guarantees LA ≤ (2 + ϵ)L⋆ +O( logn
ϵ
).

� So, with small additive factor, you can match the best expert up to the factor of 2 (the
number of possible actions).

2



1.3 Lower Bounds

� Can we make even less mistakes?

� For example, LA ≤ 1.99L⋆ + some small things.

� Let's say there are only 2 experts:

� one always say �Up�.

� another always down �Down�.

� What would you do if you are an adversary?

Lemma 1.4. There exists an adversary that guarantees that LA ≥ 2L⋆.

� Whatever algorithm chooses, the adversary just reveals the opposite outcome.

� If algorithm chooses �Up�, reveal �Down�

� If algorithm chooses �Down�, reveal �Up�

� After T days, LA = T .

� But L⋆ ≤ T/2

� If we choose �Up� less often, then the Up-expert makes T/2 mistakes.

1.4 Conclusion on the 2-Action Setting

� Recall the setting

� There are n experts.

� On day t,

* each expert i experiences a loss ℓti ∈ {0, 1}.
· ℓti = 1 if he makes a mistake

· ℓti is chosen by the adversary after the algorithm chose the action.

* algorithm's loss is ℓtA ∈ {0, 1}.
� Let Li =

∑
t ℓ

t
i denote the total loss of expert i. So L⋆ = mini Li.

� Let LA =
∑

t ℓ
t
A denote our total loss.

� The conclusion:

� When there are 2 distinct actions to choose each day (�Up� or �Down�):

� There is an algorithm with total loss LA ≤ (2 + ϵ)L⋆ +O( logn
ϵ
).

� There exists an adversary that ensures LA ≥ 2L⋆.

� So basically the factor of 2 is tight (when we must choose 1 out of 2 actions)

3



2 The General Setting

� We want to generalize the setting as follows:

� Each expert has its own independent suggestion.

� (So there are n distinct actions to choose each day, not just �up� or �down�).

� Each expert can lose or gain.

� Our choice on each day

* not just �up� or �down�.

* choose which expert to follow

* can be randomized. (We can choose a distribution of experts.)

� More formally, there are n experts and T days.

� At each day t = 1, 2, . . . , T , the following happen in order :

1. We choose a distribution pt = (pt1, . . . , p
t
n) of experts

� meaning that we follow expert i with probability pti

2. Then, the adversary reveals the loss vector ℓt = (ℓt1, . . . , ℓ
t
n)

� meaning that expert i losses money ℓti ∈ [−1, 1].
* If ℓti < 0, this means that expert i gains money.

� Important: ℓt can depend on pt (and the entire history) in an adversarial way.

3. Our (expected) loss is ℓtA = ⟨pt, ℓt⟩ =
∑

i p
t
iℓ

t
i.

� Goal:

� Our total loss LA =
∑T

t=1 ℓ
t
A

� Total loss of the best expert L⋆ = mini

∑T
t=1 ℓ

t
i.

� Want LA as small as L⋆.

� What is a natural algorithm?

� Since we absolutely have no control of the future, maybe we can rely on the past
information?

� Following the Leader: Just choose the single best expert so far.

� Is this a good algorithm?

2.1 Choosing One Expert cannot be Good

� Here, we answer the above question negatively, in a very strong way.

� Suppose each day we must choose only 1 expert i.

� That is, each day t, set pt = ei where ei is the elementary unit vector.

4



Lemma 2.1. When ℓti ∈ [0, 1] for all t (no gain). There exists an adversary such LA ≥ T
and L⋆ ≤ T/n. (Factor n worse!).

� The proof is easy

� If the algorithm chooses expert i (i.e. pt = ei), then the adversary says that only
expert i losses. (i.e. ℓt = ei).

� So LA ≥ T .

� There must be an expert that we choose at most T/n times.

� So L⋆ ≤ T/n.

Lemma 2.2. In general (ℓti ∈ [−1, 1]), there exists an adversary such that LA ≥ T and
L⋆ ≤ −(1− 2

n
)T . (Positive vs. negative!!)

� Therefore,

� as long as we deterministically choose an expert, the bound must be bad.

� So �Follow the Leader� cannot be good.

� To get good bounds, we will be randomized.

� In other words, choose a distribution of experts.

3 The Multiplicative Weights Update algorithm

� It turns out that something very close to �Follow the Leader� is very good.

� The algorithm is called Multiplicative Weights Update (MWU).

Algorithm 1 The Multiplicative Weights Update (MWU) algorithm

MWU(ϵ):

� w1
i ← 1 ∀i

� For t = 1, . . . , T

� Follows expert i with probability pti =
wt

i∑
j w

t
j

� After ℓt is revealed, wt+1
i ← wt

i · (1− ϵℓti) ∀i

5



3.1 Super�cial Interpretation

� The weight wt
i of expert i is its �importance�.

� We follow experts according to their importance pti ∼ wt
i .

� Initially, all experts have the same importance.

� If expert i losses a lot, its importance decreases a lot wt+1
i ← wt

i · exp(−ϵℓti). (It
increases when it gains.)

� �ϵ� is how aggressive we decrease the weights.

� This is a �softer� version of Follow-the-leader.

� If wt
i ≈ wt

j for all i, j, then we choose random expert.

� If expert i performs much better than everyone (wt
i ≫ wt

j for all j), then we
almost surely follow expert i.

3.2 The Guarantee: No Regret

� We can de�ne regret: Regret = LA − L⋆.

� This is, the cost of not knowing the best expert from the beginning.

� An algorithm as a no-regret property if Regret = o(T ).

� That is, Regret
T
→ 0 when T →∞

� As time goes by, you have no regret on average.

Theorem 3.1. For 0 < ϵ ≤ 1/2, MWU(ϵ) guarantees that

LA ≤ L⋆ + ϵT +
lnn

ϵ
.

Moreover, if ℓt ∈ [0, 1]n for all t, then

LA ≤ (1 + ϵ)L⋆ +
lnn

ϵ
.

� Take-away:

� MWU has no-regret property (by setting ϵ =
√

lnn
T
, Regret ≤

√
T lnn).

� The second bound is stronger (L⋆ ≤ T ).

* When there is no gain, total loss of MWU does not depend on time.

* Depend on the best expert up to a (1+ ϵ)-factor and a small O( lnn
ϵ
)-additive

factor.

� Super simple algorithm, yet super strong guarantee.

� This looks magical...

� To see how one can derive this, we need some background in calculus.

6



3.3 Proof

� Let the total weight at round t be the potential function

Φt =
n∑

i=1

wt
i

� Plan:

1. Upper bound: ΦT+1 ≤ n · exp(−ϵLA)

2. Lower bound: wT+1
i ≥ exp(−ϵLi − ϵ2T ).

3. Comparing the two bounds: for all i

e−ϵLi−ϵ2T ≤ ΦT+1 ≤ n · e−ϵLA

Taking log and implying by 1/ϵ:

−Li − ϵT ≤ lnn

ϵ
− LA

Rearranging:

LA ≤ Li + ϵT +
lnn

ϵ

and so we are done.

� Upper bound: ΦT+1 ≤ n · exp(−ϵLA) because

Φt+1 =
n∑

i=1

wt+1
i

=
n∑

i=1

wt
i(1− ϵℓti)

= Φt ·
n∑

i=1

pti(1− ϵℓti)

= Φt · (1− ϵ
〈
pt, ℓt

〉
)

≤ Φt · exp(−ϵ
〈
pt, ℓt

〉
) as 1− x ≤ e−x.

� That is, the total weight at round t is decreased by factor of exp(ϵ ⟨pt, ℓt⟩) where
⟨pt, ℓt⟩ is our loss,

� By unfolding

ΦT+1 ≤ Φ1 exp(−ϵ
T∑
t=1

〈
pt, ℓt

〉
) = n · exp(−ϵLA).

7



� Lower bound: wT+1
i ≥ exp(−ϵLi − ϵ2T ).

wT+1
i = wT

i (1− ϵℓTi )

=
T∏
t=1

(1− ϵℓti)

≥
T∏
t=1

exp(−ϵℓti − (ϵℓti)
2) as 1− x ≥ e−x−x2

for all x ≤ 0.6

= exp(−ϵ
T∑
t=1

ℓti − ϵ2
T∑
t=1

(ℓti)
2)

≥ exp(−ϵLi − ϵ2T ) as |ℓti| ≤ 1

3.4 Proof: a stronger bound when ℓti ∈ [0, 1]

Suppose that ℓti ∈ [0, 1] for all i (i.e. only loss money).

wT+1
i = wT

i (1− ϵℓTi )

=
T∏
t=1

(1− ϵℓti)

≥
T∏
t=1

(1− ϵ)ℓ
t
i as (1− ϵℓti) ≥ (1− ϵ)ℓ

t
i for ℓti ∈ [0, 1]

≥ exp(−ϵ
T∑
t=1

ℓti − ϵ2
T∑
t=1

ℓti) as 1− x ≥ e−x−x2

for x ≤ 0.6

≥ exp(−ϵLi − ϵ2Li)

� So

� We get wT+1
i ≥ exp(−ϵLi − ϵ2Li)

� instead of wT+1
i ≥ exp(−ϵLi − ϵ2T ).

� By comparing upper and lower bounds as before, we can conclude LA ≤ Li+ ϵLi+
lnn
ϵ
.

4 Analyzing Gain instead of Loss

� Sometimes, it is more convenient to think about Gain instead of Loss.

� Consider the same setting where each day adversary reveals the gain vector gt =
(gt1, . . . , g

t
n) where gt = −ℓt.

� Let GA =
∑T

t=1 ⟨pt, gt⟩ = −LA be our total gain.

� Let G⋆ = maxi
∑

gti = −L⋆ be the total gain of the best expert.

8



� We can rewrite the MWU algorithm in term as gain as follows:

� Replace wt+1
i ← wt

i · (1− ϵℓti) by wt+1
i ← wt

i · (1 + ϵgti).

Algorithm 2 The Multiplicative Weights Update (MWU) algorithm

MWU(ϵ):

� w1
i ← 1 ∀i

� For t = 1, . . . , T

� Follows expert i with probability pti =
wt

i∑
j w

t
j

� After ℓt is revealed, wt+1
i ← wt

i · (1 + ϵgti) ∀i

� With the same proof, we can show that:

Theorem 4.1. For 0 < ϵ ≤ 1/2, MWU(ϵ) guarantees that

GA ≥ G⋆ − ϵT − lnn

ϵ
.

Moreover, if gt ∈ [0, 1]n for all t, then

GA ≥ G⋆ − ϵG⋆ −
lnn

ϵ
.

5 Discussion: History

� MWU actually follows from a more general class of algorithm called �Follow the Reg-
ularized Leader�, which generalizes gradient descent too!

� See the fantastic lecture notes by Luca Travisan if you are interested.1

� MWU has been rediscovered independently many times.

� 1950's Game theory (for solving zero-sum game)

� 1980's Machine learning (AdaBoost: boost weaker learners to strong learners)

� 1990's LP solvers and �ow algorithms

� Philosophers ask whether math is inverted or discovered.

� Some algorithms are clearly inverted/engineered/very arti�cial.

� I think MWU is discovered. It was there...

� In biology, Genes even update their strategies using MWU.2

1https://lucatrevisan.github.io/40391/lecture11.pdf and
https://lucatrevisan.github.io/40391/lecture12.pdf
2https://cacm.acm.org/magazines/2016/11/209128-sex-as-an-algorithm/fulltext

9


	1 Warm up: The 2-Action Setting
	1.1 Assume Perfect Expert
	1.2 No Perfect Expert
	1.3 Lower Bounds
	1.4 Conclusion on the 2-Action Setting

	2 The General Setting
	2.1 Choosing One Expert cannot be Good

	3 The Multiplicative Weights Update algorithm 
	3.1 Superficial Interpretation 
	3.2 The Guarantee: No Regret 
	3.3 Proof
	3.4 Proof: a stronger bound when it[0,1]

	4 Analyzing Gain instead of Loss
	5 Discussion: History

