Choosing Experts via Multiplicative Weights Update

April 10, 2023

e We continue the theme of “how do you optimize when the future is unknown
or even adversarial?”

1. Last week: Online algorithms (competitive analysis)
— Example: Ski rental, Online set cover.
2. Today (and next week): Minimizing regret

— Given a fixed set of “strategies” for some thing.
— Each day, you must choose a strategy but don’t know which one is good.
— Goal: perform as good as the best strategy at time goes by.

1 Warm up: The 2-Action Setting

e There are n experts £.
e At day t, the following happen in order:

1. Every expert i predicts whether a stock price is “up” or “down”
2. The algorithm chooses “up” or “down”
3. Then, the adversary reveals the actual outcome.

— The actual outcome can depend on our choice today.

e Define the total loss L4 as the total number of mistakes the algorithm makes.

1.1 Assume Perfect Expert

e Suppose there exists a perfect expert (never wrong).
e Consider this algorithm.
e The Halving algorithm:

— Consider all experts £ with no mistakes so far.

— Each round, follow the majority of £’.

e What is the total lost?
Lemma 1.1. If there exists a perfect expert, then the Halving algorithm guarantees
L4 <logn.

e Every time we make a mistake, the size of £ reduces by a factor of 2.

e So we can make at most [log, n| mistakes.

1.2 No Perfect Expert

e But what if there is no perfect expert?
e So... we will just compare our loss with the best expert.

e Let L, be the total loss of the best expert (i.e. the number of mistakes made by the
best expert).

e Consider this algorithm.
e The Iterated Halving Algorithm:

— Divide the time into “epochs”
— In each epoch, run the halving algorithm:

x Keep track of all experts £ with no mistake in this epoch.
* When &’ is empty, start a new epoch.

Can you bound L4 in term of L,?
Lemma 1.2. The Iterated Halving Algorithm guarantees
La <log(n) - L, + log(n).
e Analysis:

— When we start a new epoch, all experts must make at least one mistake.
x L, > #epochs — 1
— For each epoch, we made at most logn mistakes.

x La <logn - #epochs
e How much small can L4 be compared to L,?

Exercise 1.3. Show an algorithm that guarantees Ly < (2+¢)L, + O(k’%).

e So, with small additive factor, you can match the best expert up to the factor of 2 (the
number of possible actions).

1.3 Lower Bounds

e Can we make even less mistakes?
— For example, L, < 1.99L, + some small things.
e Let’s say there are only 2 experts:

— one always say “Up”.

— another always down “Down”.

e What would you do if you are an adversary?
Lemma 1.4. There exists an adversary that guarantees that Ly > 2L,.

e Whatever algorithm chooses, the adversary just reveals the opposite outcome.

— If algorithm chooses “Up”, reveal “Down”

— If algorithm chooses “Down”, reveal “Up”
o After T days, Ly =T.
e But L, <T/2

— If we choose “Up” less often, then the Up-expert makes 7'/2 mistakes.

1.4 Conclusion on the 2-Action Setting

e Recall the setting

— There are n experts.
— On day t,
* each expert 7 experiences a loss ¢¢ € {0, 1}.
- ¢t = 1if he makes a mistake
- (% is chosen by the adversary after the algorithm chose the action.
* algorithm’s loss is ¢4 € {0, 1}.
— Let L; =), ¢t denote the total loss of expert i. So L, = min; L.
— Let Ly =), ¢% denote our total loss.

e The conclusion:
— When there are 2 distinct actions to choose each day (“Up” or “Down”):

— There is an algorithm with total loss Ly < (2 + €)L, + O(2%&%),

€

— There exists an adversary that ensures L4 > 2L,.

e So basically the factor of 2 is tight (when we must choose 1 out of 2 actions)

2 The General Setting

e We want to generalize the setting as follows:

— Each expert has its own independent suggestion.

(So there are n distinct actions to choose each day, not just “up” or “down”).
— Each expert can lose or gain.
— Our choice on each day

* not just “up” or “down”.
* choose which expert to follow
% can be randomized. (We can choose a distribution of experts.)

e More formally, there are n experts and T days.
e Ateachday t=1,2,...,T , the following happen in order:

1. We choose a distribution p* = (pt, ..., p') of experts
— meaning that we follow expert ¢ with probability p!
2. Then, the adversary reveals the loss vector (' = (¢4,... (')
— meaning that expert i losses money ¢! € [—1,1].
« If ¢¢ < 0, this means that expert i gains money.
— Important: ¢ can depend on p’ (and the entire history) in an adversarial way.

3. Our (expected) loss is ¢ = (p', (") = >, piet.
e Goal:

— Our total loss Ly = Y., t%,
— Total loss of the best expert L, = min; Zthl .

— Want L4 as small as L,.
e What is a natural algorithm?

— Since we absolutely have no control of the future, maybe we can rely on the past
information?

— Following the Leader: Just choose the single best expert so far.

— Is this a good algorithm?

2.1 Choosing One Expert cannot be Good

e Here, we answer the above question negatively, in a very strong way.
e Suppose each day we must choose only 1 expert 7.

e That is, each day ¢, set p' = e; where e; is the elementary unit vector.

4

Lemma 2.1. When (¢ € [0,1] for all t (no gain). There exists an adversary such Ly > T
and L, < T/n. (Factor n worse!).

e The proof is easy
— If the algorithm chooses expert i (i.e. p' = ¢;), then the adversary says that only
expert ¢ losses. (i.e. ! =¢;).
So L, >T.
— There must be an expert that we choose at most 7'/n times.
So L, <T/n.

Lemma 2.2. In general (! € [—1,1]), there exists an adversary such that Lo > T and
L, < —(1—=2)T. (Positive vs. negativel!)

e Therefore,

— as long as we deterministically choose an expert, the bound must be bad.

— So “Follow the Leader” cannot be good.
e To get good bounds, we will be randomized.

— In other words, choose a distribution of experts.

3 The Multiplicative Weights Update algorithm

e [t turns out that something very close to “Follow the Leader” is very good.

e The algorithm is called Multiplicative Weights Update (MWU).

Algorithm 1 The Multiplicative Weights Update (MWU) algorithm
MWU(e):

ow}(—l Vi

e Fort=1,...,T

t

— Follows expert ¢ with probability p! = Zwlw .
J

— After (! is revealed, w!t! < w! - (1 —eft) Vi

3.1 Superficial Interpretation
e The weight w! of expert i is its “importance”.
e We follow experts according to their importance p! ~ w?.
e Initially, all experts have the same importance.

e If expert 7 losses a lot, its importance decreases a lot w
increases when it gains.)

L wl - exp(—eft). (It

)

e “¢” is how aggressive we decrease the weights.
e This is a “softer” version of Follow-the-leader.

- If w! ~ w§. for all 7, j, then we choose random expert.

— If expert i performs much better than everyone (w; > w! for all j), then we
almost surely follow expert i.

3.2 The Guarantee: No Regret
e We can define regret: Regret = L4 — L,.
— This is, the cost of not knowing the best expert from the beginning.
e An algorithm as a no-regret property if Regret = o(7T).

— That is, &< — 0 when 7' — oo

— As time goes by, you have no regret on average.

Theorem 3.1. For 0 < e <1/2, MWU(e) guarantees that

1
Li< L, +el+ 2
€

Moreover, if ¢* € [0,1]" for all t, then

1
Li<(1+eLl,+—
€

e Take-away:

— MWU has no-regret property (by setting € = 1/22, Regret < v/T'Inn).
— The second bound is stronger (L, < T).

x When there is no gain, total loss of MWU does not depend on time.

+ Depend on the best expert up to a (1 + €)-factor and a small O(™%)-additive
factor.

e Super simple algorithm, yet super strong guarantee.

— This looks magical...

— To see how one can derive this, we need some background in calculus.

3.3 Proof

e Let the total weight at round ¢ be the potential function
ol = Z w!
i=1

e Plan:

1. Upper bound: ®T*! < n -exp(—eL,)
2. Lower bound: w)*! > exp(—eL; — €2T).

3. Comparing the two bounds: for all ¢

e—ELi—E2T S @T—i—l S n - e—eLA
Taking log and implying by 1/e:
1
Li—er<2 1,
€
Rearranging:
1
La<Li+el+—
€
and so we are done.
e Upper bound: &7+ < n - exp(—eL4) because
P+l — Zw;&l
i=1
=D wi(l—eh)
i=1
=" pl(1—elh)
i=1
=o' (1—€(p', "))
< P' - exp(—e <pt,€t>) as 1 —ax <e ™.

— That is, the total weight at round ¢ is decreased by factor of exp(e (p’, £*)) where
(p*, £*) is our loss,

— By unfolding

T
T+ < ! exp(—ez (p',0")) = n-exp(—€Ly).

t=1

e Lower bound: w] ™ > exp(—eL; — €2T).

wl ™ =wl'(1—efl)

T
“TLa -t
t=1
T
> Hexp(—eﬁf — (elh)?) as 1 —x > e forall z < 0.6
t=1
T
= exp(— Zﬁt Z)?)
t=1
> exp(—eLi — 7)) as [€f] <1

3.4 Proof: a stronger bound when ¢! € [0, 1]
Suppose that ¢¢ € [0, 1] for all ¢ (i.e. only loss money).

wl = w!l' (1 —ell)
T

=11 (1—ed)
t=1
’
> [-ef as (1 —elt) > (1 —)% for ¢t € [0,1]
t=1
T
> exp(— Zét Z[j) as1—z>e " forz <06

> exp(—eLi —€ LY;)
e So

— We get w] ™ > exp(—eL; — 2L;)
— instead of w! ™' > exp(—eL; — €T).

e By comparing upper and lower bounds as before, we can conclude L, < L; +¢€L; + 22 h‘”

4 Analyzing Gain instead of Loss

e Sometimes, it is more convenient to think about Gain instead of Loss.

Consider the same setting where each day adversary reveals the gain vector ¢' =
(g, ..., g%) where ¢ = —/(".

Let Ga =31, (p',g") = —L4 be our total gain.

Let G, = max; Y g = —L, be the total gain of the best expert.

8

e We can rewrite the MWU algorithm in term as gain as follows:

— Replace w!™ < w! - (1 —eft) by wi™ « w! - (1 +egh).

Algorithm 2 The Multiplicative Weights Update (MWU) algorithm
MWU(e):

o w1 Vi

e Fort=1,...,T

— Follows expert i with probability pt

=]
— After ¢! is revealed, w/™ «+ w!- (1 +eg!) Vi

e With the same proof, we can show that:
Theorem 4.1. For 0 < e < 1/2, MWU(e) guarantees that

1
Ga>G,—eT — 0
€
Moreover, if g* € [0,1]™ for all t, then

Gi> G- "

€

5 Discussion: History

e MWU actually follows from a more general class of algorithm called “Follow the Reg-
ularized Leader”, which generalizes gradient descent too!

— See the fantastic lecture notes by Luca Travisan if you are interested.!

e MWU has been rediscovered independently many times.

— 1950’s Game theory (for solving zero-sum game)

— 1980’s Machine learning (AdaBoost: boost weaker learners to strong learners)
— 1990’s LP solvers and flow algorithms

e Philosophers ask whether math is inverted or discovered.

e Some algorithms are clearly inverted /engineered /very artificial.

o [think MWU is discovered. It was there...

— In biology, Genes even update their strategies using MWU .2

Thttps://lucatrevisan.github.io /40391 /lecture11.pdf and
https://lucatrevisan.github.io/40391 /lecture12.pdf

https://cacm.acm.org/magazines/2016/11/209128-sex-as-an-algorithm /fulltext

9

	1 Warm up: The 2-Action Setting
	1.1 Assume Perfect Expert
	1.2 No Perfect Expert
	1.3 Lower Bounds
	1.4 Conclusion on the 2-Action Setting

	2 The General Setting
	2.1 Choosing One Expert cannot be Good

	3 The Multiplicative Weights Update algorithm
	3.1 Superficial Interpretation
	3.2 The Guarantee: No Regret
	3.3 Proof
	3.4 Proof: a stronger bound when it[0,1]

	4 Analyzing Gain instead of Loss
	5 Discussion: History

