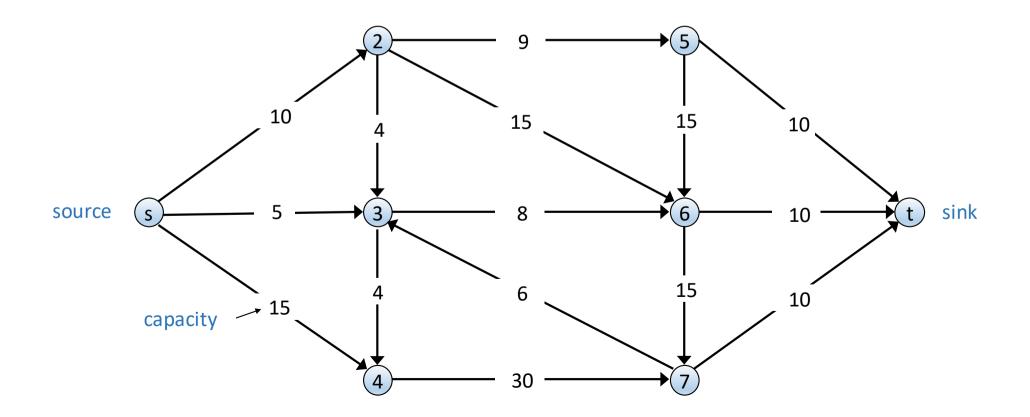
Network Flow

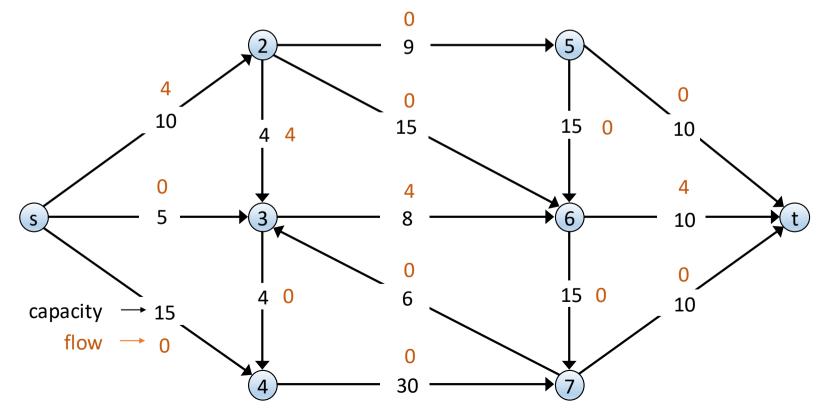
Flow Networks

- Directed graph G = (V, E)
- Two special nodes: source *s* and sink *t*
- Edge capacities c(e)
- Assume strongly connected (for simplicity)



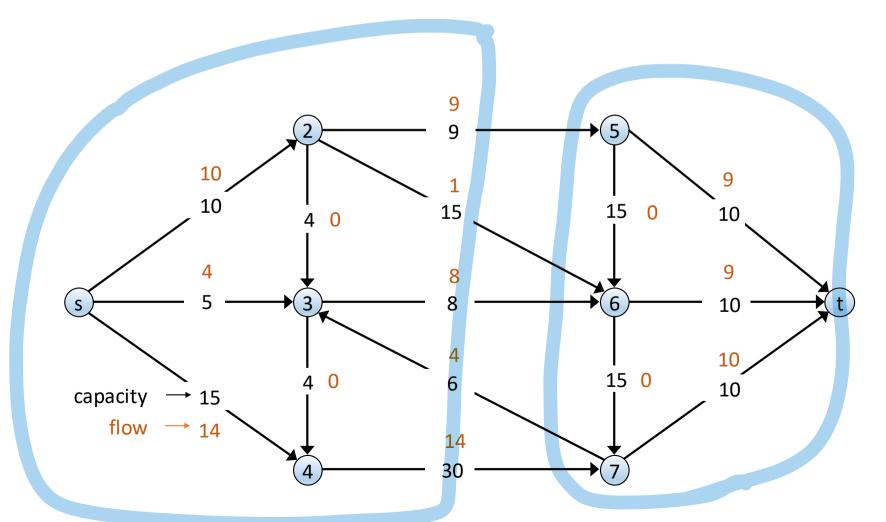
Flows

- An s-t flow is a function f(e) such that
 - For every $e \in E$, $0 \le f(e) \le c(e)$ (capacity)
 - For every $v \in V \setminus \{s, t\}$, $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ (conservation)
- The value of a flow is $val(f) = \sum_{e \text{ out of } s} f(e)$



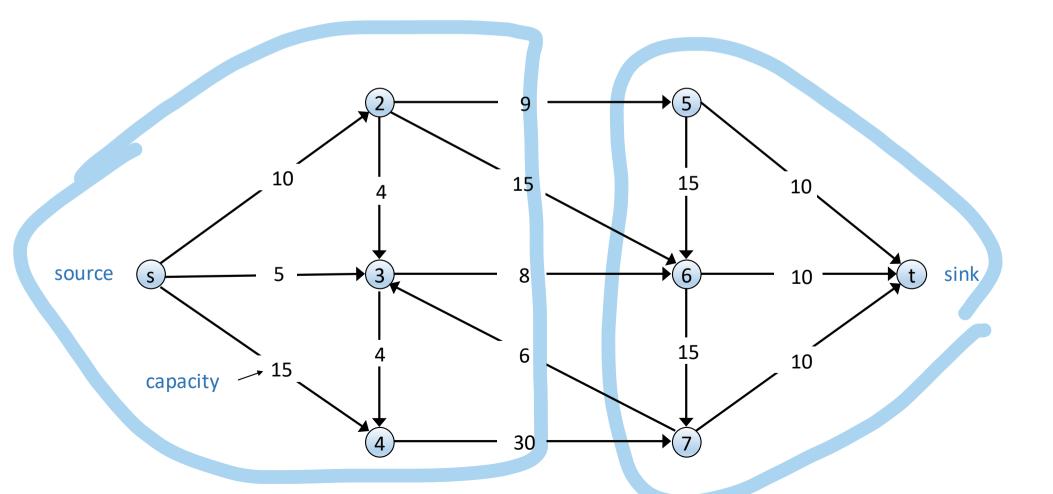
Maximum Flow Problem

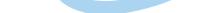
- Given G = (V,E,s,t,{c(e)}), find an s-t flow of maximum value
- value(f) = 10 + 4 + 14 = 28



Cuts

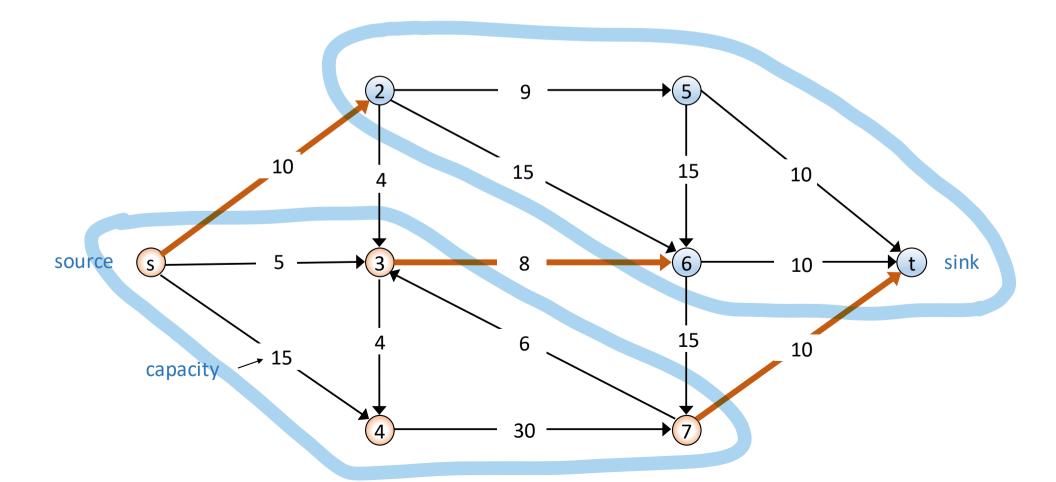
- An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$
- The capacity of a cut (A,B) is $cap(A,B) = \sum_{e \text{ out of } A} c(e)$





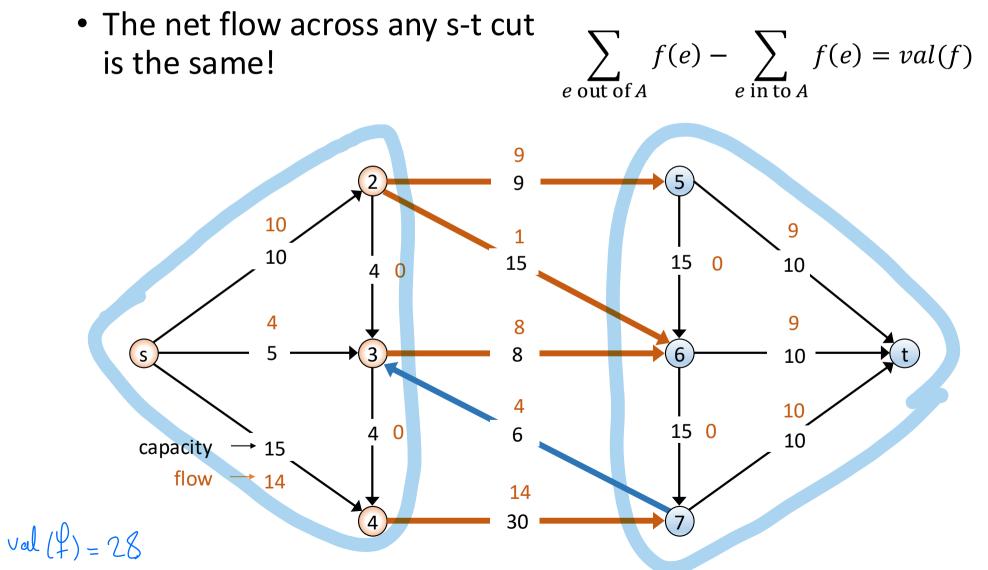
Minimum Cut problem

- Given G = (V,E,s,t,{c(e)}), find an s-t cut of minimum capacity
- cap({s,3,4,7}, {2,5,6,t}) = 28



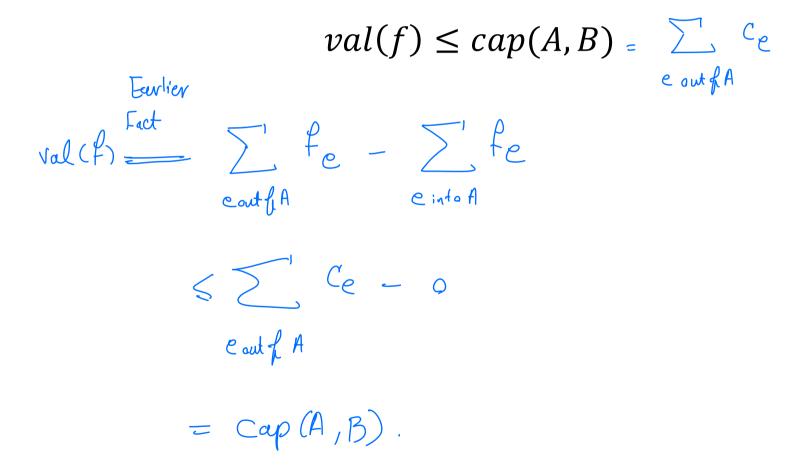
Flows & Cuts: Closely Related

• Fact: If f is any s-t flow and (A, B) is any s-t cut, then the net flow across (A, B) is equal to the amount leaving s



Cuts & Flows

• Let f be any s-t flow and (A, B) any s-t cut,



True or False?

The max flow always has an edge *e* leaving the source *s* such that *f(e) = c(e)* (is **saturated)**?

 The max flow always has an edge e such that f(e) = c(e) (is saturated)?

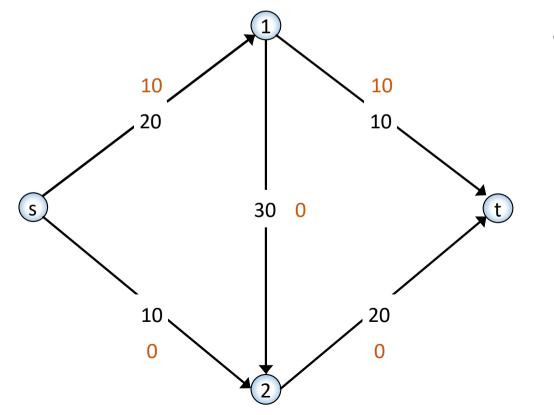
 $S_{0} \xrightarrow{+ \Re} + \Re + \Re t$ and f

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths nd greedy max flow

Augmenting Paths

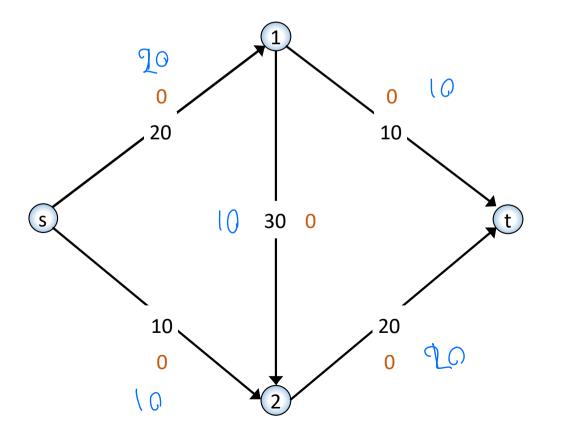
• Given a network $G = (V, E, s, t, \{c(e)\})$ and a flow f, an **augmenting path** P is a simple $s \rightarrow t$ path such that f(e) < c(e) for every edge $e \in P$



Are these augmenting paths?
× s - 1 - t
✓ s - 2 - t
✓ s - 1 - 2 - t

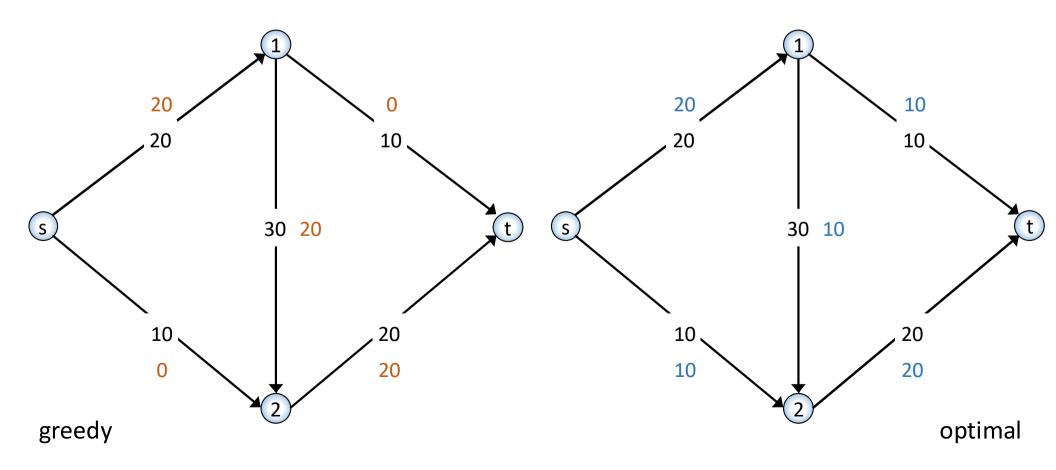
Greedy Max Flow

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P & increase flow by max amount
- Repeat until you get stuck



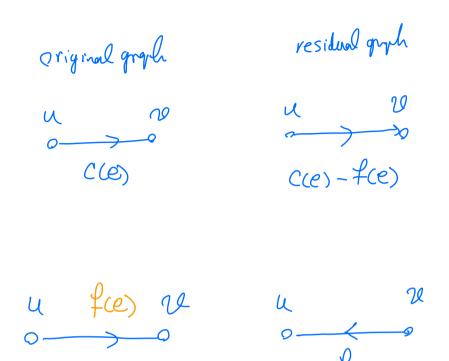
Does Greedy Work?

- Greedy gets stuck before finding a max flow
- How can we get from our solution to the max flow?



Residual Graphs

- Original edge: $e = (u, v) \in E$.
 - Flow f(e), capacity c(e)
 - Residual capacity: c(e) f(e)
- Residual edge
 - Allows "undoing" flow
 - e = (u, v) and $e^{R} = (v, u)$.
 - $cap(e^R) = f(e)$



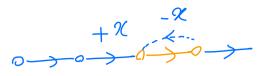
- Residual graph $G_f = (V, E_f)$
 - Original edges with positive residual capacity & residual edges with positive flow
 - $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

CS3000: Algorithms & Data

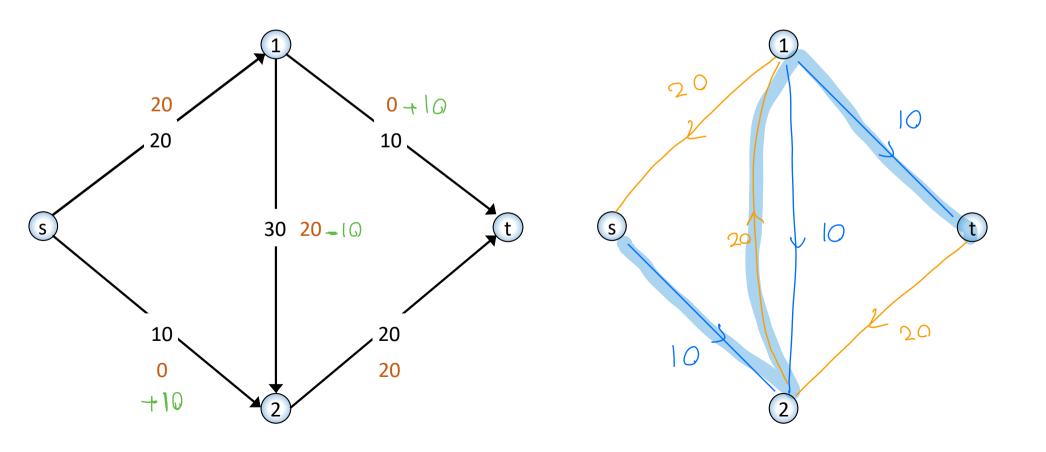
Unit 7: Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths and greedy max flow
- c. The Ford-Fulkerson Algorithm

Ford-Fulkerson Algorithm



- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph
- Repeat until you get stuck



Augmenting Paths in Residual Graphs

- Let G_f be a residual graph
- Let P be an augmenting path in the residual graph
- Fact: $f' = \text{Augment}(G_f, P)$ is a valid flow

```
Augment(G<sub>f</sub>, P)
    b \leftarrow the minimum capacity of an edge in P
    for e \in P
        if (e is an original edge):
            f(e) \leftarrow f(e) + b
        else:
            f(e<sup>R</sup>) \leftarrow f(e<sup>R</sup>) - b
    return f
```

Ford-Fulkerson Algorithm

```
FordFulkerson(G,s,t,{c(e)})

for e \in E: f(e) \leftarrow 0

G_f is the residual graph

while (there is an s-t path P in G_f)

f \leftarrow Augment(G_f, P)

update G_f

return f
```

```
Augment(G<sub>f</sub>, P)

b \leftarrow \text{the minimum capacity of an edge in P}

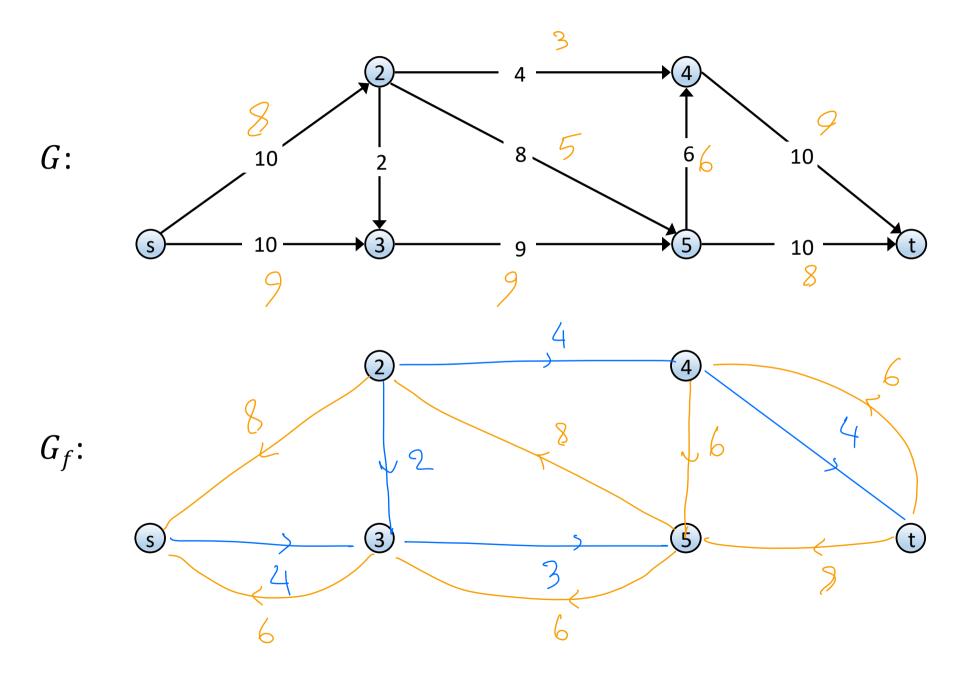
for e \in P

if (e is an original edge): f(e) \leftarrow f(e) + b

else: f(e^R) \leftarrow f(e^R) - b

return f
```

Ford-Fulkerson Demo



What do we want to prove?

Running Time of Ford-Fulkerson

• For integer capacities, $\leq val(f^*)$ augmentation steps

- Can perform each augmentation step in O(m) time
 - find augmenting path in O(m)
 - augment the flow along path in O(n)
 - update the residual graph along the path in O(n)
- For integer capacities, FF runs in $O(m \cdot val(f^*))$ time
 - O(mn) time if all capacities are $c_e = 1$
 - $O(mnC_{max})$ time for any integer capacities $\leq C_{max}$
 - Problematic when capacities are large—more on this later!

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths and greedy max flow
- c. The Ford-Fulkerson Algorithm
- d. Optimality of Ford-Fulkerson and Duality

- Theorem: f is a maximum s-t flow if and only if there is no augmenting s-t path in G_f
- Strong MaxFlow-MinCut Duality: The value of the max s-t flow equals the capacity of the min s-t cut
- We'll prove that the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

we proved last time that for any s-t flow f, and any s-t cut A, B, $Val(f) \leq cap(A, B)$.

- Theorem: the following are equivalent for all f
 - 1. There exists a cut (A, B) such that val(f) = cap(A, B)
 - 2. Flow f is a maximum flow
 - 3. There is no augmenting path in G_f

- (3 \rightarrow 1) If there is no augmenting path in G_f , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes

- (3 \rightarrow 1) If there is no augmenting path in \mathring{G}_{f} , then there is a cut (A, B) such that val(f) = cap(A, B)
 - Let A be the set of nodes reachable from s in G_f
 - Let *B* be all other nodes
 - Key observation: no edges in G_f go from A to B

Take an elge e hot crosses the cut

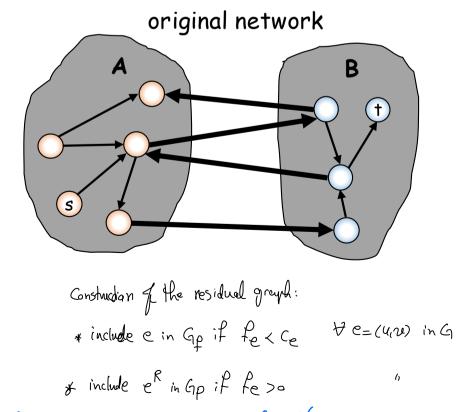
• If
$$e$$
 is $A \to B$, then $f(e) = c(e)$

• If $e ext{ is } B \to A$, then f(e) = 0 $left ext{ session's}$ Fact

val(f) = net flow arross (A,B) in G

$$= \sum_{e:A \to B} fe - \sum_{e:B \to A} fe$$

$$= \operatorname{Cap}(A, B) - o = \operatorname{Cap}(A, B)$$



residue

* since for any flow f', val(f') < cap(A1B), as discussed last time, f must be a maximu Ask the Audience * If there is another but A', B', with cup(A',B') < cup(A,B) then val(f), cup(A',B') Is this a maximum flow? q contradiction. 1.5 b 1 S 0.5 0.5 1

- Is there an integer maximum flow? $\gamma_{e\varsigma}$
- Does every graph with integer capacities have an integer maximum flow?

Summary

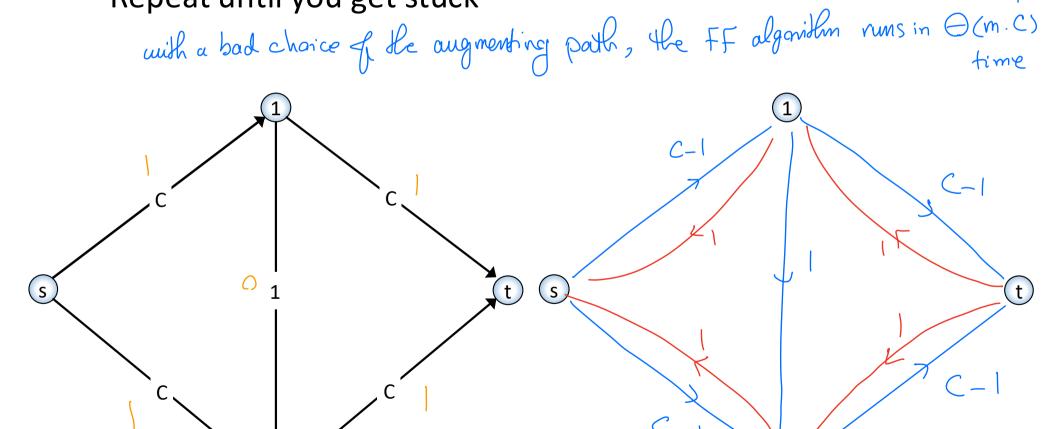
- The Ford-Fulkerson Algorithm solves maximum s-t flow
 - Running time $O(m \cdot val(f^*))$ in networks with integer capacities
- Strong MaxFlow-MinCut Duality: max flow = min cut
 - The value of the maximum s-t flow equals the capacity of the minimum s-t cut
 - If f* is a maximum s-t flow, then the set of nodes reachable from s in G_{f*} gives a minimum cut
 - Given a max-flow, can find a min-cut in time O(n + m)
- Every graph with integer capacities has an integer maximum flow
 - Ford-Fulkerson will return an integer maximum flow

Network Flow

- a. Key concepts and problem definitions
- b. Augmenting paths and greedy max flow
- c. The Ford-Fulkerson Algorithm
- d. Optimality of Ford-Fulkerson and Duality
- e. Choosing good augmenting paths

Speeding Up Ford-Fulkerson

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph G_f
- Repeat until you get stuck



val (F*) = 2C

O(self)

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, then we have found a max flow
 - Can construct capacities where the algorithm never terminates
 - Can require many augmenting paths to terminate

• Today: clever augmenting paths

- Maximum-capacity augmenting path ("fattest path")
- Shortest augmenting paths ("shortest path")

Maximum-capacity augmenting path

- Can find the fattest augmenting path in time O(m log C) in several different ways
 - Variants of Prim's or Kruskal's MST algorithm
 - BFS + binary search

Arbitrary Paths

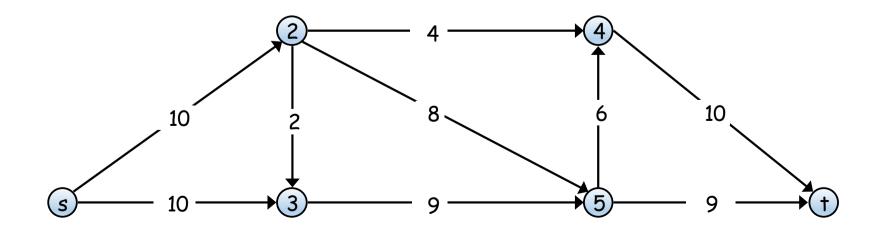
- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in $G_f : \leq v^* 1$ Flow remaining in $G_f : v^* \frac{v^*}{m} = (1 \frac{1}{m})v^*$
 - # of aug paths:

 $\mathcal{V}^{\dagger} \longrightarrow (1 - \frac{1}{m}) \mathcal{V}^{\dagger} \longrightarrow (1 - \frac{1}{m}) \mathcal{V}^{\dagger}$ <1

- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *B*
- Key Claim: $B \ge \frac{v^*}{m}$



- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *B*
- Key Claim: $B \ge \frac{v^*}{m}$
- Proof:

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in *G_f*:
- # of aug paths:

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, it has found a maximum flow
- Today: clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln C)$ total running time
 - Shortest augmenting paths ("shortest augmenting path")

Shortest Augmenting Path & Improvements

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities nm/2 augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!
- Warning: the proof is challenging, so we will skip it
- Better Theorem: Max flow can be solved in O(mn) time
 - You can use this fact for all future assignments/exams

$$m = \log C$$

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, then we have found a max flow
 - Can construct capacities where the algorithm never terminates
 - Can require many augmenting paths to terminate

• Today: clever augmenting paths

- Maximum-capacity augmenting path ("fattest path")
- Shortest augmenting paths ("shortest path")

Maximum-capacity augmenting path

- Can find the fattest augmenting path in time O(m log m) in several different ways
 - Use a variant of Dijkstra or combine BFS & BinarySearch

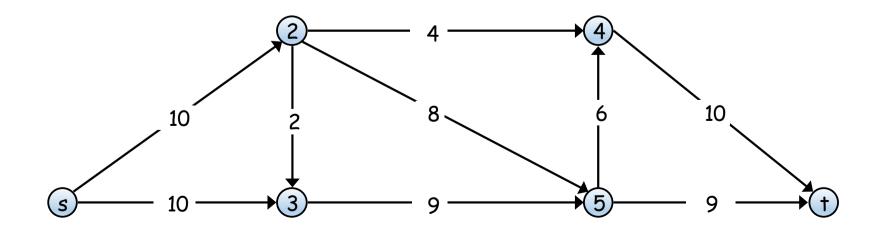
Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in *G_f*:
- # of aug paths:

- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *B*
- Key Claim: $B \ge \frac{v^*}{m}$



- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *B*
- Key Claim: $B \ge \frac{v^*}{m}$
- Proof:

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path:
- Flow remaining in *G_f*:
- # of aug paths:

Choosing Good Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, it has found a maximum flow
- **Today:** clever augmenting paths
 - Maximum-capacity augmenting path ("fattest augmenting path")
 - $\leq m \ln v^*$ augmenting paths (assuming integer capacities)
 - $O(m^2 \ln n \ln v^*)$ total running time
 - See KT for a faster variant ("fat-enough augmenting path"?)
 - Shortest augmenting paths ("shortest augmenting path")

Shortest Augmenting Path & Improvements

- Find the augmenting path with the fewest hops
 - Can find shortest augmenting path in O(m) time using BFS
- Theorem: for any capacities nm/2 augmentations suffice
 - Overall running time $O(m^2n)$
 - Works for any capacities!
- Warning: the proof is challenging, so we will skip it
- Better Theorem: Max flow can be solved in O(mn) time
 - You can use this fact for all future assignments/exams

Applications of Network Flow

a. Reductions between computational problems

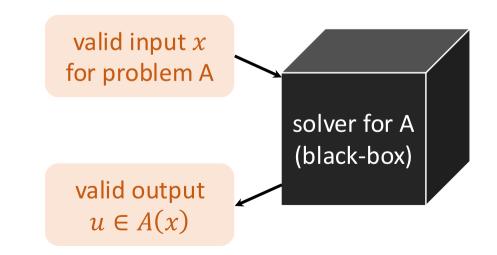
Applications of Network Flow

- Algorithms for maximum flow can be used to solve:
 - Bipartite Matching
 - Image Segmentation
 - Disjoint Paths
 - Survey Design
 - Matrix Rounding
 - Auction Design
 - Fair Division
 - Project Selection
 - Baseball Elimination
 - Airline Scheduling
 - ..

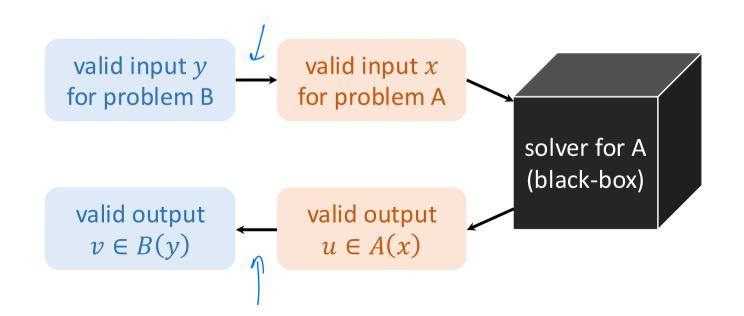
- Definition: a computational problem is
 - a set of valid inputs X and
 - a set A(x) of valid outputs for each $x \in X$

• **Example:** integer maximum flow

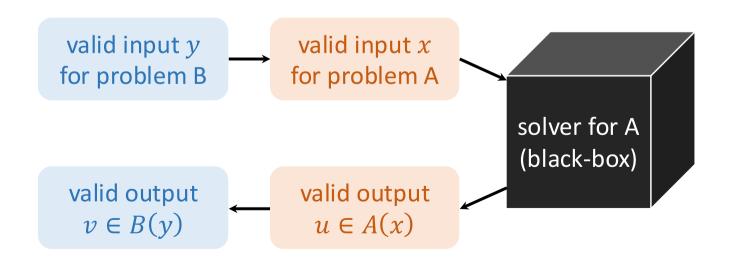
• **Definition:** a **reduction** is an efficient algorithm that solves problem B using an algorithm that solves problem A as a **black-box**



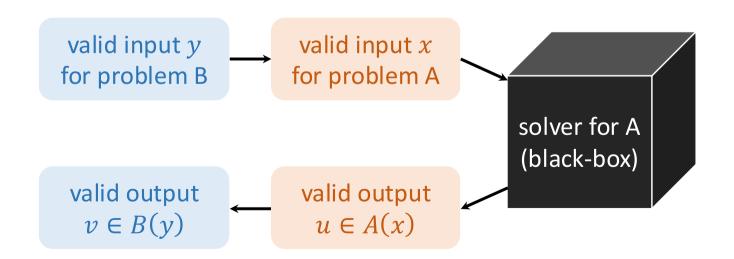
• **Definition:** a **reduction** is an efficient algorithm that solves problem B using an algorithm that solves problem A as a **black-box**



Correctness of Reductions

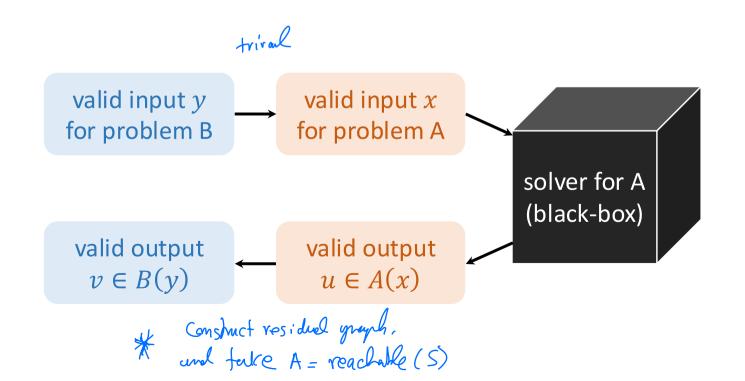


Running Time of Reductions

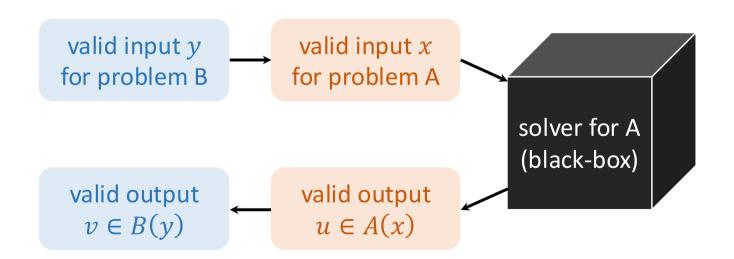


Example: Flows and Cuts

4 O(m+n) + time to salve more from



Example: Sorting and Median

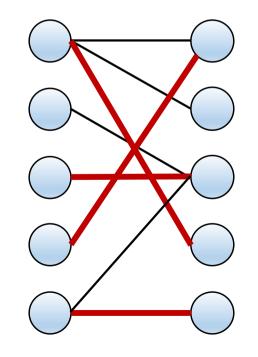


Maximum Bipartite Matching

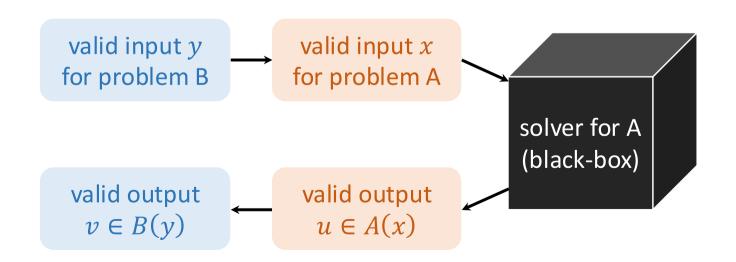
- Input: bipartite graph G = (V, E) with $V = L \cup R$
- **Output:** a matching of maximum size
 - A matching $M \subseteq E$ is a set of edges such that every node v is an endpoint of at most one edge in M
 - Size = |*M*|

Models any problem where one type of object is assigned to another type:

- doctors to hospitals
- jobs to processors
- advertisements to websites



• **Theorem:** There is an efficient algorithm that solves maximum bipartite matching (MBM) using an algorithm that solves integer maximum s-t flow (MF)



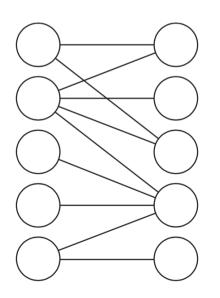
Step 1: Transform the Input

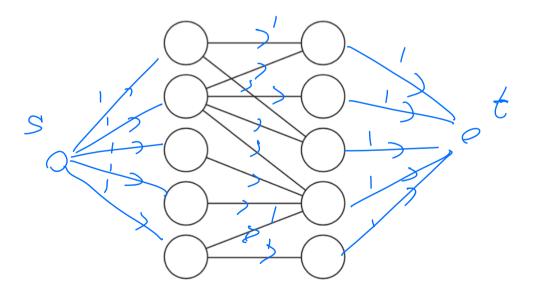
valid input *G* for MBM

valid network G' for MF

R

L

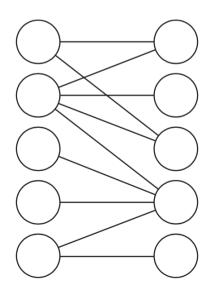


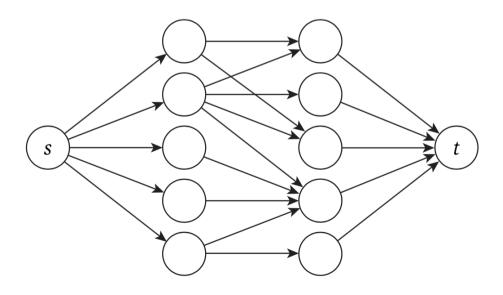


Step 1: Transform the Input

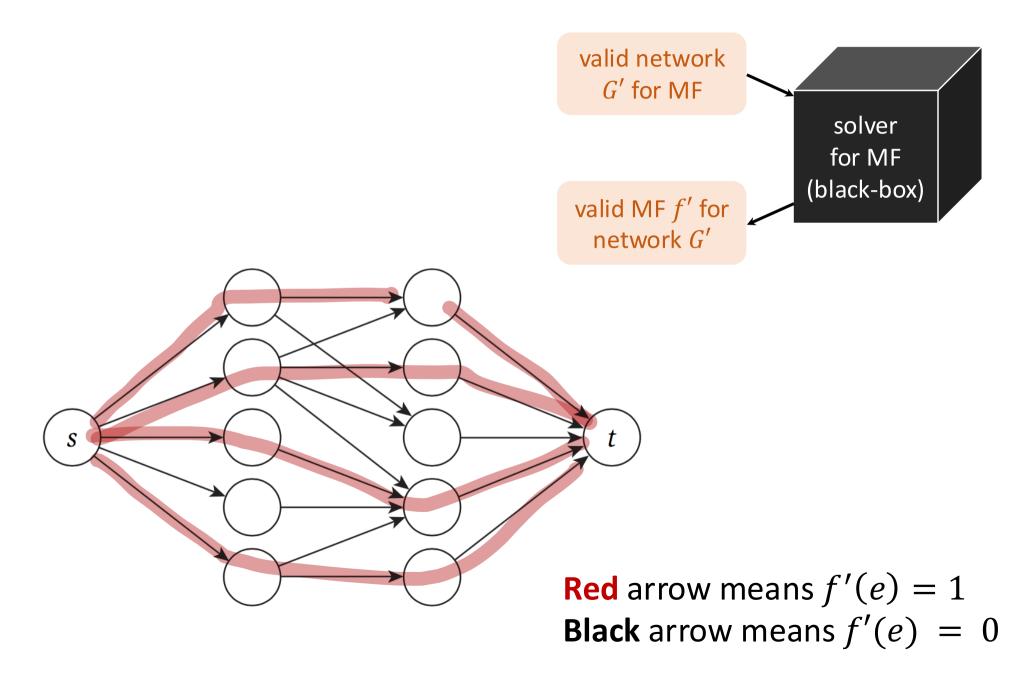
valid input *G* for MBM

valid network G' for MF

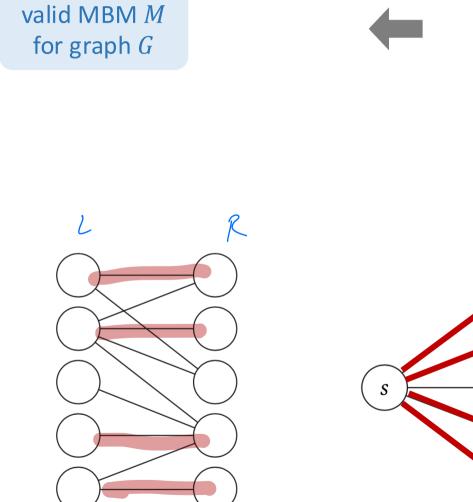


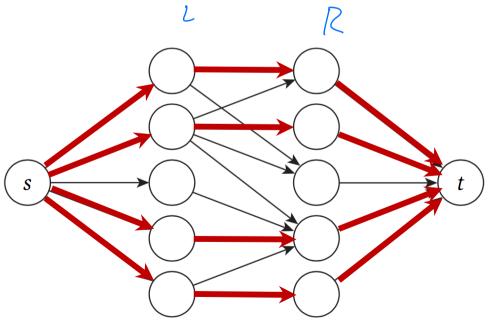


Step 2: Receive the Output



Step 3: Transform the Output





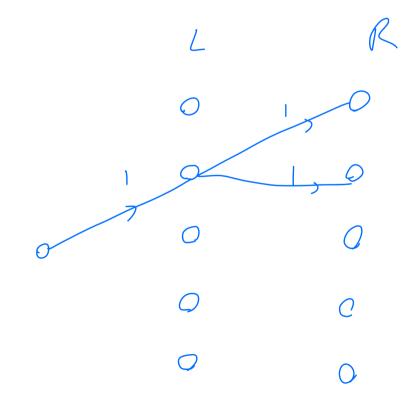
valid MF f' for

network G'

Reduction Recap

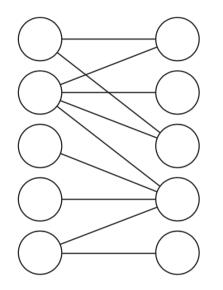
- Step 1: Transform the Input
 - Given bipartite graph G = (L, R, E), produce flow network $G' = (V, E, \{c(e)\}, s, t)$ by:
 - orienting edges *e* from *L* to *R*
 - adding a node *s* with edges from *s* to every node in *L*
 - adding a node t with edges from every node in R to t
 - setting all capacities to 1
- Step 2: Receive the Output
 - Find an integer maximum *s*-*t* flow *f* in *G*
- Step 3: Transform the Output
 - Given an integer s-t flow f'(e) let M be the set of edges e going from L to R that have f'(e) = 1

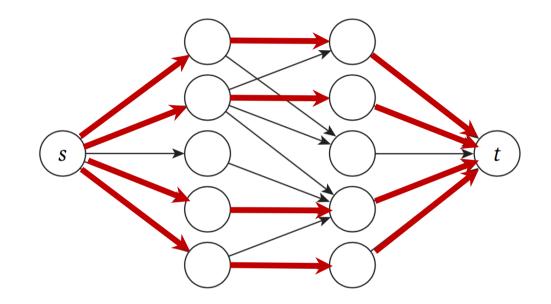
- Need to show:
 - (1) This algorithm returns a matching
 - (2) This matching is a maximum cardinality matching



Every ventex in 2 has incomig capacity 1, therefore incomig flow at most one, therefore outgoing flow at most one => venteces in 2 hour at most one cope in the mobili

• This algorithm returns a matching

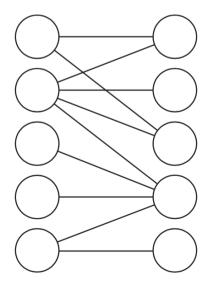


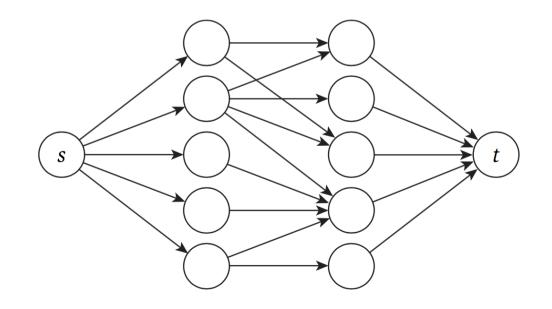


• Claim: G has a matching of cardinality k if and only if G' has an s-t flow of value k current fastest known again for MBM runs

in (m^{1+o(1)}) time. open: find max flow (or MBM) in (m lgn) S t

• Claim: *G* has a matching of cardinality *k* if and only if *G*' has an *s*-*t* flow of value *k*





Running Time

- Need to analyze the time for:
 - (1) Producing G' given G
 - (2) Finding a maximum flow in G'
 - (3) Producing *M* given *G*'

Maximum Bipartite Matching Summary

Solve maximum *s*-*t* flow in a graph with n + 2nodes and m + n edges and c(e) = 1 in time *T*

Solve maximum bipartite matching in a graph with n nodes and m edges in time T + O(m + n)

- Can solve max bipartite matching in time O(nm) using Ford-Fulkerson
 - Improvement for maximum flow gives improvement for maximum bipartite matching!

• **Definition:** a **reduction** is an efficient algorithm that solves problem B using an algorithm that solves problem A as a **black-box**

