CS7800: Advanced Algorithms

Soheil Behnezhad

Flow Augmentation

Speeding Up Ford-Fulkerson

- Start with f(e) = 0 for all edges $e \in E$
- Find an augmenting path P in the residual graph G_f
- Repeat until you get stuck

Naive implementation of FF takes O(mf*).

Choosing Good Augmenting Paths

- Last time: arbitrary augmenting paths
 - If Ford-Fulkerson terminates, then we have found a max flow
 - Can construct capacities where the algorithm never terminates
 - Can require many augmenting paths to terminate

• Today: clever augmenting paths

- Maximum-capacity augmenting path ("fattest path")
- Shortest augmenting paths ("shortest path")

Both modifications are due to Edwards & Kaup from early 70'S.

Choose the augmenting path with largest bottleneck value.

• Claim: Can find the fattest augmenting path in time $O(m \log n)$

Proof: Can use variants of Prim's or Kruskal's algorithms.

22

Arbitrary Paths

- Assume integer capacities
- Value of maxflow: v^*
- Value of aug path: ≥ 1
- Flow remaining in $G_f : \leq v^* 1$
- # of aug paths: $\leq v^*$

Maximum-Capacity Path

Assume integer capacities

in the residual graph

- Value of maxflow: v^*
- Value of aug path: 🦻 🖓 👫
- Flow remaining in G_f : $v^* \frac{v^*}{m}$ # of aug paths: $=(1-\frac{1}{m})v^*$
- # of aug paths:

ofter O(m lg
$$f^{*}$$
) augmentations, the flow remains is
 $f^{*} \cdot (1 - \frac{1}{m})^{O(m lg f^{*})} \leq f = O(lg f^{*}) \leq f \cdot \frac{1}{f^{*}} = 1$

- f^* is a maximum flow with value $v^* = val(f^*)$
- *P* is a fattest augmenting s-t path with capacity *B*
- Key Claim: $B \ge \frac{v^*}{m}$

By the flow decomposition theorem, there are at most m (s-t)-paths whose flows sum up to 20th. Therefore the largest one has to have capacity $\frac{20^{4}}{m}$.

Flow Networks

Flow Decomposition Theorem. Every non-negative (s, t)-flow f can be written as a positive linear combination of directed (s, t)-paths and directed cycles. Moreover, a directed edge $u \rightarrow v$ appears in at least one of these paths or cycles if and only if $f(u \rightarrow v) > 0$, and the total number of paths and cycles is at most the number of edges in the network.

We unite
$$h = a \cdot f + b \cdot f'$$
 to denote $h(u \rightarrow ve) = a \cdot f(u \rightarrow ve) + b \cdot f'(u \rightarrow v)$.
Proof: Take the flow f . Heradirely do the following:
Take the source S , and an ordgoing eye $(S \rightarrow ve)$
with possible flow. Continue a walk
 $S \rightarrow ve \rightarrow v_2 \rightarrow \cdots$
on eyes with possible flow until we revisit a
ventex f the path or reach the sink.

Choose the augmenting path with largest bottleneck value.

• Claim: Can find the fattest augmenting path in time $O(m \log n)$

Proof: Can use variants of Prim's or Kruskal's algorithms.

Choose the augmenting path with largest bottleneck value.

• **Theorem:** The fattest augmenting path algorithm runs in $O(m^2 \log n \log f^*)$ time.

augmentations is at most $O(m g f^*)$ each augmentation takes O(m Q g n) time. total time is $O(m^2 Q n Q f^*)$.

Shortest Augmenting Path

Choose the augmenting path with largest bottleneck value.

- **Theorem:** The shortest augmenting path algorithm runs in $O(m^2n)$ time.
- Key Claim: During the execution of shortest augmenting path algorithm, every edge disappears from the residual graph at most n/2 times.

- Total time is $O(mn) \times O(m) = O(m^n)$.

Shortest Augmenting Path

Gi

- Let f_i and G_i be the flow after *i* augmentations and the corresponding residual graph.
- Let *level_i(v)* denote the unweighted shortest path distance from s to v in G_i.
- Claim: The levels can only increase. Namely, level_i(v) ≥ level_{i-1}(v) for all vertices v and all integers i > 0.

Proof: We prove this by an induction on level, (2) (and not 2): Let (4,22) be the last edge in the sharest path from 5 to 20 in Gi. we have level. (2) = level. (a) + 1. A By the induction hypothesis, level (u) > level (u) If $U \rightarrow 2e$ is also an edge in G_{i-1} then $level_{i-1}(2e) \leq level_{i-1}(w) + 1$. Therefore $\operatorname{level}_{\hat{\mathcal{L}}}(\mathcal{V}) \stackrel{\bigstar}{=} \operatorname{level}_{\hat{\mathcal{L}}}(\mathcal{U}) + 1 \stackrel{\curvearrowleft}{=} \operatorname{level}_{\hat{\mathcal{L}}-1}(\mathcal{U}) + 1 \stackrel{\circlearrowright}{=} \operatorname{level}_{\hat{\mathcal{L}}-1}(\mathcal{V})$

- Total time is $O(mn) \times O(m) = O(mn)$.

Shortest Augmenting Path

- Let f_i and G_i be the flow after i augmentations and the corresponding residual graph.
- Let *level_i(v)* denote the unweighted shortest path distance from s to v in G_i.
- Claim: The levels can only increase. Namely, level_i(v) ≥ level_{i-1}(v) for all vertices v and all integers i > 0.

 $\operatorname{level}_{i}(v) = \operatorname{level}_{i}(u) + 1 \geqslant \operatorname{level}_{i-1}(u) + 1 \geqslant \operatorname{level}_{i-1}(v)$

If $u \rightarrow v^2$ is not an edge in G_{i-1} . This means that the a.p. we find in step i, includes the edge $(ve \rightarrow w)$. This means level $(u) = level_{i-1}(ve) + 1$. i=1level $(ve) = level_{i-1}(u) - 1 \leq level_{i-1}(u) + 1$.

Shortest Augmenting Path

- Key Claim: During the execution of shortest augmenting path algorithm, every edge disappears from the residual graph at most n/2 times.
- Claim: Suppose (u, v) is in two residual graphs G_i, G_{j+1} but not in any of G_{i+1}, \dots, G_j . Then $level_j(u) \ge level_i(u) + 2$.

(1)
$$level_{i}(ve) = level_{i}(u)+1$$

(2) $level_{j}(ve) \gg level_{i}(ve)$
(3) $level_{j}(u) = level_{i}(ve)+1 \gg level_{i}(ve)+1 = level_{i}(u)+1+1$

Profit (cey claim: Take a varder a and fix any 2. If level: (u)=00
Hen by Claum 1 that levels keep increasing, a never becomes reachable, so
Never pandicipates in any $\alpha \cdot p$. again. Otherwise level; $(u) \leq n-1$.
By claim 2, every edge (4,2) appears/disappers from the
residual greph at most <u>n-1</u> times. 2 S
Every augmentation deletes one edge from the res graph, and tortal
detetions is upper banded by O(mn), so we can have at most O(mn)
Componentations. Each takes O(m) time, so to tal runtime is Xm2n

)