
Flow Applications

 



Applications of Network Flow
• Algorithms for maximum flow can be used to solve:

• Bipartite Matching
• Image Segmentation
• Disjoint Paths
• Survey Design
• Matrix Rounding
• Auction Design
• Fair Division
• Project Selection
• Baseball Elimination
• Airline Scheduling
• …



Mechanics of Reductions

• Definition: a computational problem is
• a set of valid inputs 𝑿 and
• a set 𝑨(𝒙) of valid outputs for each 𝒙 ∈ 𝑿

• Example: integer maximum flow



Mechanics of Reductions

• Definition: a reduction is an efficient algorithm 
that solves problem B using an algorithm that 
solves problem A as a black-box
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Correctness of Reductions
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Running Time of Reductions

solver for A
(black-box)

valid input 𝑦
for problem B

valid output
𝑣 ∈ 𝐵 𝑦

valid input 𝑥
for problem A

valid output
𝑢 ∈ 𝐴 𝑥



Example: Flows and Cuts
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Example: Sorting and Median
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Maximum Bipartite Matching
• Input: bipartite graph 𝐺 =  (𝑉, 𝐸) with 𝑉 = 𝐿 ∪ 𝑅
• Output: a matching of maximum size

• A matching 𝑀 ⊆ 𝐸 is a set of edges such that every 
node 𝑣 is an endpoint of at most one edge in 𝑀

• Size = 𝑀

Models any problem where one type 
of object is assigned to another type:
• doctors to hospitals
• jobs to processors
• advertisements to websites



Mechanics of Reductions

• Theorem: There is an efficient algorithm that solves 
maximum bipartite matching (MBM) using an 
algorithm that solves integer maximum s-t flow (MF)
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Step 1: Transform the Input
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Step 2: Receive the Output

Red arrow means 𝑓′ 𝑒 = 1
Black arrow means 𝑓′(𝑒) = 0
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Step 3: Transform the Output

valid MBM 𝑀 
for graph 𝐺

valid MF 𝑓′ for 
network 𝐺′



Reduction Recap
• Step 1: Transform the Input

• Given bipartite graph 𝐺 =  (𝐿, 𝑅, 𝐸), produce flow 
network 𝐺’ =  (𝑉, 𝐸, {𝑐(𝑒)}, 𝑠, 𝑡) by:

• orienting edges 𝑒 from 𝐿 to 𝑅
• adding a node 𝑠 with edges from 𝑠 to every node in 𝐿
• adding a node 𝑡 with edges from every node in 𝑅 to 𝑡
• setting all capacities to 1

• Step 2: Receive the Output
• Find an integer maximum 𝑠-𝑡 flow 𝑓’ in  𝐺’

• Step 3: Transform the Output
• Given an integer 𝑠-𝑡 flow 𝑓′ 𝑒  let 𝑀 be the set of edges 

𝑒 going from 𝐿 to 𝑅 that have 𝑓′(𝑒) = 1



Correctness

• Need to show:
• (1) This algorithm returns a matching
• (2) This matching is a maximum cardinality matching



Correctness

• This algorithm returns a matching



Correctness

• Claim: 𝐺 has a matching of cardinality 𝑘 if and only 
if 𝐺’ has an 𝑠-𝑡 flow of value 𝑘
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Edge-Disjoint Paths
• Input: directed graph 𝐺 =  (𝑉, 𝐸) and vertices 𝑠, 𝑡. 
• Output: maximum number of edge disjoint paths 

between 𝑠 and 𝑡.
• Each edge must appear in at most one path.
• A vertex may belong to multiple paths.
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Vertex-Disjoint Paths
• Input: directed graph 𝐺 =  (𝑉, 𝐸) and vertices 𝑠, 𝑡. 
• Output: maximum number of vertex disjoint paths 

between 𝑠 and 𝑡.
• Each edge must appear in at most one path.
• A vertex may belong to multiple paths.SITE
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Baseball Elimination
• Every year millions of American baseball fans eagerly watch their 

favorite team, hoping they will win a spot in the playoffs, and ultimately 
World Series.

• Sadly, many teams are “mathematically eliminated” days or weeks 
before the regular season ends. E.g. if a team cannot win enough games 
to catch up to the current leader, they are eliminated.

• But the situation is not always this easy. Consider the following standing 
from American League East on Aug 30, 1996.

• While Detroit is clearly behind, if they win all their 27 remaining games 
they will end up with 76 wins, more than any team has now.

• But does this mean Detroit can end up being the leader?

76 117
76 30 20
76 171
771

76



76



Baseball Elimination
• The baseball elimination problem can be abstracted as follows.
• Input: 

• 𝑊 1. . 𝑛 : Number of current wins by team 𝑖
• 𝐺 1. . 𝑛, 1. . 𝑛 : Number of game left between teams 𝑖 and 𝑗.

• Goal: Can team 𝑛 end up with maximum number of wins possibly 
tied with other teams?



Baseball Elimination
• Let 𝑅 𝑖 = σ𝑗 𝐺[𝑖, 𝑗] be the remaining  games for team 𝑖.
• Let’s assume team 𝑛 wins all of its 𝑅[𝑛] remaining games.
• Observation: Team 𝑛 ends up in first place iff every team 𝑖 wins at 

most 𝑊 𝑛 + 𝑅 𝑛 − 𝑊[𝑖] of its remaining games.
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Project Selection
• A set of 𝑛 projects. Some projects cannot be started until certain 

other projects are completed. The projects and their 
dependencies are described by a directed acyclic graph (DAG).

• Each project 𝑣 has a profit $ 𝑣  which can be positive or negative 
(in that case doing the project has a cost). 

• Goal: Finish a subset of valid projects to maximize profit.



• Key Claim: Take any S-T cut of finite weight W. Then selecting the 
jobs in S guarantees a profit of P-W where P is total profit of all 
profitable jobs.

Profitable jobs

Costly jobs

D 15
W 13

It therefore suffices tominimizew to maximizeprofit


