
CS 7870: Seminar for Algorithms for Big Data (Spr’26) Northeastern University

Lecture 3, 4
Jan 20, 2026

Instructor: Soheil Behnezhad Scribe: Soheil Behnezhad, Thien Nguyen

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1 Sublinear Graph Connectivity

Our goal in this lecture is to design sublinear time algorithms for two prominent graph problems, namely, the
connected components and the minimum spanning tree problems. The algorithm discussed in this lecture is
a slightly modified version of the algorithm of Chazelle, Rubinfeld, and Trevisan [CRT05].

Recall that when designing sublinear time algorithms, it’s important to specify how the input is represented
and can be accessed, since we can only read a small portion of it. When it comes to graphs, there are two
common access models: the adjacency list and adjacency matrix :

• Adjacency List: Each query specifies a vertex v and an integer i. The output is the ID of the ith
neighbor of v, or FAIL if deg(v) < i.

• Adjacency Matrix: Each query is a pair of vertices u, v, and the output is 1 if the edge {u, v} exists
and 0 otherwise.

Some graph problems are easier to solve in the adjacency list model while others are easier to solve in the
adjacency matrix model. In this lecture, we will focus on the adjacency list model. We start by focusing on
the graph connectivity problem.

Problem 1 (Graph Connectivity).

Input: An n-vertex graph G = (V,E) in adjacency list format.

Goal: Let C be the number of connected components of G. We seek an estimate C̃ such that

Pr
(
|C̃ − C| ≥ εn

)
≥ 1− 1

δ
,

where δ > 1 and ϵ ∈ (0, 1) are given parameters.

Remark. Note that we do not require the exact number of connected components, but rather an
“additive approximation” of it. Namely, it is ok if our estimate differs from the actual number of
connected components by up to ϵn. We also don’t want this estimate to always be accurate, but it is
sufficient that it is accurate with a high probability (of 1− 1/δ).

We consider both the case where the graph is simple (i.e. there are no parallel edges) and the case where
the graph might contain parallel edges.

Note that this is not a multiplicative approximation but is an additive approximation of ϵn which can be
quite far from C. We will see later why this is the best we can do.

1

Naively, BFS and DFS take Θ(m+n) times due to having to go through all the edges and vertices. Instead,
we look to estimate some other value that makes up C. For any vertex v, let Sv be the size of the connected
component that v is in. Then ∑

v∈V

1

Sv
= C.

Since Sv can be quite large, we use a smaller proxy S′
v = min(Sv, 2/ϵ). We can show that this quantity can

estimate C well. Letting C ′ =
∑

v∈V
1
S′
v
, :

Claim 1. |C ′ − C| ≤ ϵn
2 .

Proof. First, we claim that for any vertex v ∈ V , we have

0 ≤ 1

S′
v

− 1

Sv
≤ ϵ

2
.

Note that if Sv ≤ 2/ϵ, then S′
v = Sv, satisfying the inequality clearly. So let’s assume Sv > 2/ϵ which also

means S′
v = 2/ϵ. The lower bound follows since S′

v ≤ Sv. The upper bound holds because

1

S′
v

− 1

Sv
≤ 1

S′
v

= ϵ/2.

Now summing over all vertices v, we get ∣∣∣∣∣∑
v

1

S′
v

− 1

Sv

∣∣∣∣∣ ≤ ϵn

2
.

This fact allows us to estimate C ′ instead of C. We present Algorithm 1 that attempts so. In short, we
are computing S

′

v for enough random vertices v to ensure that we are concentrating around the true value
and then scaling the sum by an appropriate constant to ensure that our estimate is not biased. We show its
correctness and analyze its running time next.

Algorithm 1 Approx. Connectivity

1. Let K := 3
ϵ2 ln 2/δ (set from our analysis).

2. For i = 1 to K:

(a) Sample a vertex vi independently and uniformly at random from V .

(b) For vetex vi, start exploring the connected component of vi with BFS or DFS and truncate if 2/ϵ
vertices are seen. Let S

′

vi be the number of vertices seen in the connected components of vi.

3. Return: C̃ := n
K

∑K
i=1

1
S′
vi

.

1.1 Analysis of Algorithm 1

First, we show that C̃ approximates C ′ in expectation. Then we show that it concentrates around its
expectation (of which we expect since it’s a sum of bounded independent r.v.’s).

Claim 2. E
[
C̃
]
= C ′.

2

Proof. Let Xi =
1

S′
vi

. We have

E
[
C̃
]
= E

[
n

K

K∑
i=1

Xi

]
=

n

K

K∑
i=1

E [Xi] ,

where the latter equality follows from linearity of expectation. Let us now bound E[Xi]. We have

E [Xi] =
∑
v∈V

Pr [vi = v]︸ ︷︷ ︸
1
n

· 1
S′
v

==
1

n

∑
v∈V

1

S′
v

=
C ′

n
.

Plugging this back in, we get

E
[
C̃
]
=

n

K

K∑
i=1

E [Xi] =
n

K

K∑
i=1

C ′

n
= C ′.

We can now establish the concentration result:

Theorem 1. Let C̃ be returned by Algorithm 1, then

Pr
[∣∣∣C̃ − C ′

∣∣∣ ≤ ϵn

2

]
≥ 1− δ.

This implies that with probability ≥ 1− δ,
∣∣∣C̃ − C

∣∣∣ ≤ ϵn.

Proof. Let Xi =
1

S′
vi

and X =
∑K

i=1 Xi. Since C̃ = n
KX, we have

∣∣∣C̃ − C ′
∣∣∣ = ∣∣∣C̃ − E

[
C̃
]∣∣∣ = n

K |X − E [X]|.

So
∣∣∣C̃ − C ′

∣∣∣ ≥ ϵn
2 ⇐⇒ |X − EX| ≥ ϵK

2 .

We will use the additive Chernoff bound, which recall shows Pr [|X − EX| ≥ t] ≤ 2 exp
(
− t2

3EX

)
for any

0 ≤ t ≤ EX. Note that EX ≤ K due to Xi ≤ 1. We have:

Pr
[∣∣∣C̃ − C ′

∣∣∣ ≥ ϵn

2

]
= Pr

[
|X − EX| ≥ ϵK

2

]
≤ 2 exp

(
− 1

3EX
· ϵ

2K2

4

)
≤ 2 exp

(
−ϵ2K

12

)
(EX≤ K)

= δ.

The last equality comes from our choice of K: 2 exp
(
− ϵ2K

12

)
= δ implies K = 3

ϵ2 ln 2/δ. Taking the

complement of the probability gives us the result.

Running time. For each step of the for loop, we perform a BFS to obtain at most 1
ϵ vertices (truncated

BFS). At worst, it can visit every edge of its 1
ϵ vertices. Let ∆ be the maximum degree of the graph. Then

the running time would be O (K) ·O
(
1
ϵ∆
)
= O

(
log(1/δ)

ϵ3 ∆
)
.

For a simple graph, the worst case is a complete graph with O
(

1
ϵ2

)
edges. Hence, the running time is

O
(

log 1
δ

ϵ4

)
for a simple graph.

3

Remark (Multiplicative Approximation). Our current approximation of C − ϵn ≤ C ′ ≤ C + ϵn seems
not too satisfying. If n is large and C is small, then ϵ would have to be set very small to achieve a
reasonable approximation. Worse still, for parallel graphs, n and C might be small but if the maximum
degree is large, the run time can be much larger than both C and n.

Hence, one might wonder if it’s possible to obtain a multiplicative approximation (1 − ϵ)C ≤ C ′ ≤
(1 + ϵ)C rather than weaker C − ϵn ≤ C ′ ≤ C + ϵn. Sadly, the answer is no. For some intuition,
consider a graph G consisting of two fully connected subgraphs K1,K2 of size n/2 each. Consider two
cases where K1 and K2 are disconnected and one where they are connected by only 1 edge. Then to
distinguish between those two cases require the ability to find the vertex that connects the two graphs
together. A formal proof will be presented later.

2 Sublinear Minimum Spanning Tree

Let us now study the Minimum Spanning Tree (MST) problem.

Problem 2 (Minimum spanning tree).

Input: A connected edge-weighted graph G = (V,E,w) with w : V → {1, . . . ,W} in adjacency list format.

Goal: Let T be the weight of the MST of G, which is a spanning tree with the smallest weight. We wish
to compute an estimate T̃ such that

Pr
[
T̃ ∈ (1± ϵ)T

]
≥ 1− δ.

Note that this is a multiplicative approximation unlike approximated connected components.

Remark (Kruskal algorithm). Recall the greedy Kruskal algorithm that finds an MST in O (m log n)
time, where we sort all the edges and one-by-one add the lowest weighted edge that joins 2 connected
components together until there’s no more edge left to add. We now look for an approximation algorithm
that runs in much faster time.

To gain some intuition for this problem, we first examine the simple case when we ∈ {1, 2}. Let G(i) be the
subgraph of G including the edges of weights {1, . . . , i}. Let C(i) be the number of connected components
in graph G(i). Observe from Kruskal’s algorithm that the optimal solution is to first find a spanning forest
in G(1), which will have n − C(1) edges. Then we should connect these forests into a tree using (C(1) − 1)
edges of weight two (recall that we assume G is a connected graph). Hence, the overall value of MST is

(n− C(1)) + (C(1) − 1) · 2 = n− 2 + C(1).

The following claim generalizes this for any W ≥ 2.

Theorem 2. It holds that T = n−W +
∑w−1

i=1 C(i).

Proof. Let αj = # of edges of weight j in the MST. This definition gives T =
∑W

j=1 αj · j. Note that

W∑
j=1

αj · j =
W∑
i=1

W∑
j=i

αj ,

4

Algorithm 2 Sublinear MST

1. Input: Graph G with maximum edge weight W and number of vertices n.
2. For i = 1, . . . ,W

(a) Construct G(i) by removing edges of weights strictly greater than i from G.

(b) Run connectivity (i.e. Algorithm 1) on G(i) to obtain C̃(i).

3. Return n−W −
∑W−1

i=1 C̃(i).

since for each αj in the inner sum, we count it j times: once for each i ≤ j of the outer sum. As another
way to see this, consider the grid where each row represents weight i:

αW αW αW αW

...
...

...
...

α3 α3 α3

α2 α2

α1

Then the first sum is just summing the rows first and the second sum is summing the columns first.

Now, let βj :=
∑W

j=i+1 αj = # of edges of weight > j in the MST. Recall the definition of G(j) where we

remove all the edges of weight > j from G. Then, since the number of connected components in G(j) is C(j),
there must be C(j) − 1 edges of weights > j connecting the C(j)’s components together. Similarly to how
Kruskal’s algorithm can add edges greedily to build the tree, the MST of G must also contain C(j) − 1 of
edges of weights > j. That means βj = C(j) − 1.

Then, combining everything, we have:

T =

W∑
i=1

W∑
j=i

αj =

W∑
i=1

βi−1 =

W∑
i=1

C(i−1) − 1 =

W−1∑
i=0

C(i) −W = n−W −
W−1∑
i=1

C(i).

This establishes our claim.

This theorem means that we can solve or approximate MST by computing or approximating C(i) for each
i = 1, . . . ,W −1. We can do that via the connectivity algorithm from Theorem 1. We present this algorithm
formally in Algorithm 2.

Correctness. We must first inspect the failure probability of W connectivity runs:

Pr [all W calls to the connectivity algorithm succeed] ≥ 1−
W∑
i=1

Pr
[
ith call fails

]
≥ 1− δW.

We can then set δ = δ′/W to get a 1 − δ′ bound. To handle the estimation error, we note that the error
overall is W · ϵn if we run connectivity W times. Hence, we can set ϵ = ϵ′/W.

Time Complexity. Since each connectivity run takes O
(

log 1
δ

ϵ4

)
time, plugging in the choices of δ and ϵ

above for each W connectivity run, we get an overall time complexity of

O

(
W 5 log

δ′

W

ϵ′4

)
.

5

Remark. We can further reduce the dependency on W by bucketing weights together, but that’s a
topic for another time.

Combining the above, we recover the following result:

Theorem 3. [?] In any n-vertex edge-weighted simple graph G of average degree d, there is an O
(
W 5 log δ

W

ϵ4

)
time algorithm to produce an estimate m̃st(G) such that

Pr
[
m̃st(G) ∈ (1± ϵ) ·mst(G)

]
≥ 1− δ.

Exercise: Prove that finding the edges of (any) appropriate MST requires Ω
(
n2
)
time.

References

[CRT05] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning
tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005. 1

6

	1 Sublinear Graph Connectivity
	1.1 Analysis of Algorithm 1

	2 Sublinear Minimum Spanning Tree

