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Abstract
Mixed strategies are often evaluated based on the expected
payoff that they guarantee. This is not always desirable.
In this paper, we consider games for which maximizing
the expected payoff deviates from the actual goal of the
players. To address this issue, we introduce the notion of a
(u, p)-maxmin strategy which ensures receiving a minimum
utility of u with probability at least p. We then give
approximation algorithms for the problem of finding a (u, p)-
maxmin strategy for these games.

The first game that we consider is Colonel Blotto, a
well-studied game that was introduced in 1921. In the
Colonel Blotto game, two colonels divide their troops among
a set of battlefields. Each battlefield is won by the colonel
that puts more troops in it. The payoff of each colonel
is the weighted number of battlefields that she wins. We
show that maximizing the expected payoff of a player does
not necessarily maximize her winning probability for certain
applications of Colonel Blotto. For example, in presidential
elections, the players’ goal is to maximize the probability of
winning more than half of the votes, rather than maximizing
the expected number of votes that they get. We give
an exact algorithm for a natural variant of continuous
version of this game. More generally, we provide constant
and logarithmic approximation algorithms for finding (u, p)-
maxmin strategies.

We also introduce a security game version of Colonel
Blotto which we call auditing game. It is played between two
players, a defender and an attacker. The goal of the defender
is to prevent the attacker from changing the outcome of
an instance of Colonel Blotto. Again, maximizing the
expected payoff of the defender is not necessarily optimal.
Therefore we give a constant approximation for (u, p)-
maxmin strategies.
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1 Introduction

Pure strategies are often not desirable as they typically
allow the opponent to exploit the chosen strategy.
Randomization through mixed strategies has shown to
be effective in addressing this issue. In the literature,
mixed strategies are mostly evaluated based on the
expected payoff that they guarantee. For example,
a maxmin strategy maximizes the minimum possible
expected payoff of a player. This is misleading when
the tail behavior of a strategy is particularly important.
In the following paragraphs, we start by the definition
of some natural games for which the objective is a more
complicated function than the expected payoff.

Colonel Blotto. Colonel Blotto was first intro-
duced by Borel in 1921 [6]. In the Colonel Blotto game,
two colonels each have a pool of troops and fight against
each other over a set of battlefields. The colonels simul-
taneously divide their troops between the battlefields.
A colonel wins a battlefield if the number of her troops
dominates the number of troops of her opponent. Each
battlefield has an associated weight, and the final payoff
of each colonel is the sum of the weights of the battle-
fields that she wins. The continuous variant of the game
corresponds to the case where the resources (troops)
are capable of continuous partition; whereas the dis-
crete version considers the case where the partitions are
natural numbers.

Recent studies have made significant progress in
understanding the optimal strategies of Colonel Blotto
when the players are expectation maximizers [1, 4, 25,
16, 17, 28, 18, 26]. Note that even the problem of max-
imizing the expected payoff in the Colonel Blotto game
is quite a challenge since the players have a huge number
of pure strategies. The pioneering work of Immorlica et
al. [19] initiated the study of large constant-sum games
(such as Colonel Blotto) and showed that in some cases
finding the equilibria of these games is tractable. The
first polynomial time algorithm to find the equilibria of
Colonel Blotto was presented by Ahmadinejad et al. [1].

Copyright c© 2018 by SIAM

Unauthorized reproduction of this article is prohibited



Later, Behnezhad et al. [4] improved upon this algo-
rithm to obtain a “faster and simpler” solution.

Although the Colonel Blotto game was initially pro-
posed to study a war situation, it has found applications
in the analysis of many different forms of competition.
Perhaps the most notable application of Colonel Blotto
is in the U.S. presidential election where the President is
elected by the Electoral College system. In the Electoral
College system, each state has a number of electoral
votes, and the candidate who receives the majority of
electoral votes is elected as the President of the United
States. In most of the states, a winner-take-all rule de-
termines the electoral votes, and the candidate who gets
the majority of votes in a state will benefit from all the
electoral votes of the corresponding state.1 It might
happen that the winning candidate receives fewer votes
than her opponent. Therefore, the candidates strategize
their resources (e.g., money, staff, etc.) to maximize the
number of electoral votes they win and as such, their
policies might undermine the popular vote.

This form of election can be modeled as a Colonel
Blotto game by corresponding each state to a battlefield
and modeling the candidates’ resources with the troops
of the colonels. If the candidates were to maximize
the expected number of electoral votes, the optimal
strategies could be characterized and computed via the
known techniques [19, 1, 4, 15, 35, 34]. However,
in the U.S. election, the goal of the parties is to
maximize the likelihood of winning the race which is
the probability that their candidate wins the majority
of the electoral votes. To illustrate how different
the two objectives could be, imagine that a strategy
of a candidate secures an expected number of 280
electoral votes out of 538 votes in total. Now, if this
solution guarantees 270 electoral votes with probability
0.5 and receives 290 electoral votes with probability
0.5, then the corresponding strategy always wins the
race. Another (artificial) possibility is that this strategy
receives 260 electoral votes with probability 9/10 and
460 votes with probability 1/10 and thus losing the race
with probability 9/10 despite receiving more than half
of the electoral votes in expectation.

Although expectation maximizer strategies of
Blotto have received a lot of attention over the past
few decades [6, 7, 13, 14], prior to this work, not much
was known for the case where the goal is to maximize
the likelihood of winning a certain amount of payoff.
In this work, we study this problem for both the dis-
crete and continuous variants of Colonel Blotto. In par-

1All states except Maine and Nebraska choose their electors
on a winner-take-all basis. In this work, we consider an idealized

electoral vote system where a state may not split its electoral

votes.

ticular, for the discrete variant of Colonel Blotto, we
present a logarithmic approximation algorithm and im-
prove this result for the continuous case to a constant
approximation algorithm. We also give an exact algo-
rithm for the guaranteed payoff setting (when the goal
is to obtain a utility u with probability 1) in the contin-
uous case. Moreover, we provide improved algorithms
for the uniform case (when all the battlefields have the
same weight). an al

Auditing game. This game could be viewed as
a security game version of the Colonel Blotto game.
A security game has a defender and an attacker and
the goal of the defender is to protect a set of targets
from possible attacks of the attacker using her limited
resources. Many different variants of security games,
targeting different applications (e.g., protecting a set of
nodes in a graph, scheduling a set of patrols in space
and time, etc.) have been considered in the literature
[5, 11, 36, 8, 20].

For a given instance of Colonel Blotto, the goal
of the defender in the auditing game is to prevent
an attacker from changing the outcome of the game
by protecting the battlefields. Since we consider the
problem in the full information setting, we assume both
players have full information of the game including the
winner of each battlefield.2 Let us again focus on the
presidential election. In this setting, a hacker plays
the role of the attacker and an auditor plays the role
of a defender. The hacker tries to change the winner
by hacking some states and changing the outcome of
those states in favor of a player (an actual loser of the
election). The auditor, on the other hand, is able to
audit a limited number of states to prevent this. If
the auditor protects a state that the hacker is trying to
attack, the auditor catches the hacker. If the hacker is
caught by the auditor, she gets utility 0 but otherwise,
her utility would be the total number of electoral votes
that she hacks. The game is constant-sum and the sum
of the payoffs of the players is always the total number of
electoral votes. Similar to Colonel Blotto, maximizing
the expected payoff of the auditor does not necessarily
maximize the chance of preventing the hacker from
changing the winner of the race. We show in Section 7
that given a threshold u for the utility of the hacker, we
can compute a constant approximation algorithm that
approximately maximizes the likelihood of the auditor
to prevent the hacker from obtaining a payoff more than
u.

We refer the interested readers to the rich literature
on different auditing strategies and methodologies in

2In real world, an estimation of the votes could be learned from
internal polls.
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protecting election results [10, 9, 32, 30, 29, 31, 33, 23,
24, 22].

An alternative to expectation. One way to
tackle this problem is to change the payoff function
of the players. For example, in Colonel Blotto, if we
change the utility of the players such that a player gets
a utility 1 if and only if she wins more than half of the
electoral votes, maximizing her expected payoff would
indeed maximize her winning chance. However, instead
of changing the game setting (which breaks the linearity
assumption and causes a combinatorial explosion), we
take a rather different (and generalizable) approach.

Consider a two-player game between player A and
player B.3 We call a strategy of player A a (u, p)-maxmin
strategy, if it guarantees a utility of at least u for her
with probability at least p, regardless of the strategy
that player B chooses. In other words, a strategy X is
(u, p)-maxmin if for every (possibly mixed) strategy Y
of the opponent we have

Pr
x∼X,y∼Y

[uA(x, y) ≥ u] ≥ p,

where uA(x, y) denotes the payoff of player A if she plays
strategy x and player B plays strategy y. Now for a
given required payoff u and probability p, the problem
is to find a (u, p)-maxmin strategy or report that there
is no such strategy.

For many natural games, solving (u, p)-maxmin (for
any given u and p) is computationally harder than
the case where we focus on expected payoff (e.g., see
Section 4.2 for a discussion about why it seems to be
computationally harder to solve (u, p)-maxmin rather
than maximizing expected payoff for Colonel Blotto).
Therefore, it is reasonable to look for approximation
algorithms. An approximate solution may relax the
given probability, the given payoff, or both.

2 Our Results and Techniques

Throughout this paper, we consider the discrete and
continuous variants of Colonel Blotto, as well as the au-
diting game and provide approximately optimal (u, p)-
maxmin strategies for these games. Our main result is an
algorithm with logarithmic approximation factor for the
discrete Colonel Blotto game. Next, we provide a con-
stant approximation algorithm for the continuous vari-
ant of Colonel Blotto and finally we provide a constant
approximation algorithm for the auditing game.

At a high level, our techniques are inspired by recent
developments in game theory and optimization. For
instance, when the goal is to maximize the guaranteed

3Our definition could easily be generalized to multi-player
games.

payoff of a player (finding a (u, 1)-maxmin strategy)
our problem settings generalizes Stackelberg games. In
addition to this, when the goal is to find a (u, p)-maxmin
strategy for an arbitrary 0 ≤ p ≤ 1, the problem
extends the robust optimization problem studied in [12].
We also devise a decomposition technique inspired by
[3, 21, 2, 27].

We recall that a plethora of studies have analyzed
and characterized the equilibria of structured zero-sum
games such as Colonel Blotto [19, 1, 4, 15, 35, 34]. In
particular, Ahmadinejad et al. [1] and Behnezhad et
al. [4] present polynomial time algorithms to compute
the maxmin strategies of Colonel Blotto. Provided that
the maxmin strategies of Colonel Blotto are available, it
is crucial to understand how well such strategies perform
when the objective is not to maximize the expected
payoff but to approximate a (u, p)-maxmin strategy. We
begin in Section 4, by illustrating the difference between
the maxmin strategies and (u, p)-maxmin strategies.
Although we show that in special cases, a maxmin
strategy provides a decent approximation of a (u, p)-
maxmin strategy, we present an example to show that
in general, maxmin strategies are not competitive to the
(u, p)-maxmin ones. Our counter-example is a Colonel
Blotto game in which the number of troops of player B
is many times more than the troops of player A.

Theorem 4.1 [restated]. For any given u, p and
arbitrarily small constants 0 < α < 1 and 0 < β < 1,
there exists an instance of Colonel Blotto (both dis-
crete and continuous), where for any approximate
(α′u, β′p)-maxmin strategy that an expectation maxi-
mizer algorithm returns, either α′ < α or β′ < β.

Theorem 4.1 states that in order to provide an exact
or even an approximation algorithm for (u, p)-maxmin
strategies, one needs to go beyond the expectation max-
imizer algorithms. Following this observation, we begin
our results by studying the special case of (u, 1)-maxmin
or in other words the u-guaranteed payoff strategies for
the discrete variant of Colonel Blotto game.

For the special case of p = 1, one possible strategy
of the opponent is to randomize over all pure strategies.
Thus, any strategy of player A that guarantees a payoff
of at least u with probability 1, must obtain a payoff
of at least u against any pure strategy of the opponent.
Indeed this condition is sufficient to declare a strategy
(u, 1)-maxmin or in other words, any strategy of player
A that obtains a payoff of at least u against any pure
strategy of player B is (u, 1)-maxmin. Moreover, one
can show that randomization offers no benefit to player
A when the objective is to find a (u, 1)-maxmin strategy.
Therefore, the definition of (u, 1)-maxmin strategies
coincides with the notion of pure maxmin strategies.
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Based on this, our objective is to find a pure strategy
for player A that obtains the maximum payoff against
any best response of the opponent. This is very similar
to Stackelberg games with the exception that here we
only incorporate the pure strategies of player A.

For a fixed strategy of player A, the best response of
player B can be modeled as a knapsack problem. Let ai
denote the number of troops of player A in battlefield
i. In order for player B to maximize her payoff (or
equivalently minimize player A’s payoff) she needs to
find a subset of battlefields S and put ai troops in every
battlefield i in this subset. The constraint is that she
can only afford to put M troops in those battlefields and
therefore

∑
i∈S ai should be bounded by M . Therefore

the problem is to find a subset S of battlefields with the
maximum total weight subject to

∑
i∈S ai ≤ M . This

problem can be solved in time poly(N,M,K) (where K
is the number of battlefields) with a classic knapsack
algorithm. However, a polytime algorithm for best
response does not lead to a polytime solution since
player A has exponentially many pure strategies and
verifying all such strategies takes exponential time.

To overcome this challenge, we relax the best re-
sponse algorithm of player B to an almost best response
greedy algorithm. Let Wmax = maxwi be the maxi-
mum weight of a battlefield or equivalently the max-
imum profit of an item in the knapsack problem. It
is well-known that the following greedy algorithm for
knapsack guarantees an additive error of at most Wmax

in comparison to the optimal solution: sort the items
based on the ratio of profit over size and put these items
into the knapsack accordingly. Based on this observa-
tion, if we restrict the opponent to play according to the
greedy algorithm, the performance of our solution drops
by an additive factor of at most Wmax. Once we replace
the strategy of player B by the greedy knapsack algo-
rithm, finding a maxmin strategy of player A becomes
tractable. More precisely, we show that the problem
of finding an optimal strategy for player A against the
greedy knapsack algorithm boils down to a dynamic pro-
gram that can be solved in polynomial time.

In order to turn the Wmax additive error into a 1/2
multiplicative error, we also consider a strategy of player
A that puts all her troops in the battlefield with the
highest weight. We show that the better of the two
strategies guarantees a profit of at least u/2 against
any strategy of the opponent where u is the maximum
possible guaranteed payoff of player A.

Theorem 5.1 [restated]. There exists a polynomial
time algorithm that gives a (u/2, 1)-maxmin strategy of
player A, assuming that u is the maximum guaranteed
payoff of player A.

In Section 5.2, we consider the problem of approxi-
mating a (u, p)-maxmin strategy for an arbitrary u and
0 ≤ p ≤ 1. This case is more challenging than the case of
guaranteed payoff since (1) the solution is not necessar-
ily a pure strategy; and (2) the knapsack modeling for
the best response of player B is no longer available. We
begin by considering the special case of uniform weights
(wherein all the weights are equal to 1) and providing an
algorithm for approximating a (u, p)-maxmin strategy in
this setting. Later, we reduce instances with general
weights to this case. Since all the weights are equal to
1, we are able to characterize the optimal strategies of
the players and based on that we provide simple strate-
gies that obtain a fraction of the guarantees that the
optimal strategies provide.

Theorem 5.2 [restated]. Given that there exists a
(u, p)-maxmin strategy for player A in an instance of
discrete Colonel Blotto with uniform weights, there
exists a polynomial time algorithm that provides a
(u/8, p/2)-maxmin strategy.

The more technically involved result of Section 5.2
concerns the case where the weights are not necessarily
uniform. We show a reduction from the case of non-
uniform weights to the case of uniform weights that
loses an O(logK) on the payoff of the algorithm. The
high-level idea is as follows: In order to approximate
a (u, p)-maxmin strategy, we separate the battlefields
into two categories high-value and low-value. High-
value battlefields have a weight of at least u/O(logK)
and the payoff of the low-value battlefields is below this
threshold. The idea is that in order for player A to
obtain a payoff of at least u/O(logK) it only suffices to
win a high-value battlefield. Moreover, if the number
of low-value battlefields is considerable, player A may
distribute her troops over those battlefields and obtain
a payoff of at least u/O(logK). Since any high-value
battlefield provides a payoff of at least u/O(logK), we
can ignore the weights and play on these battlefields
as if all their weights were equal. For the low-value
battlefields, on the other hand, we take advantage of
the fact that any battlefield of this type contributes
a small payoff to the optimal solution and thus via
a combinatorial argument we reduce the problem to
the case of uniform weight. We then state that if
player A flips a coin and plays on each set of battlefield
with probability 1/2 she can obtain a payoff of at
least u/O(logK) with probability at least p/O(1) given
that there exists a (u, p)-maxmin strategy for player A.
This method is similar to the core-tail decomposition
technique used in [3, 21, 2, 27] to design approximately
optimal mechanisms in the worst case scenarios.
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Theorem 5.3 [restated]. Given that a (u, p)-maxmin
strategy exists for player A in an instance of discrete
Colonel Blotto, there exists a polynomial time algo-
rithm that provides a (u/(16(dlogKe+1)), p/4)-maxmin
strategy.

We also consider the continuous Colonel Blotto
problem in Section 6. In the continuous variant of
the problem, the players may allocate a real number
of troops to a battlefield. We show that this enables
us to exactly compute the optimal guaranteed payoff of
player A with an LP. Recall that the best response of
player B in the guaranteed payoff case can be modeled
via a knapsack problem. Let ai denote the number of
troops that player A allocates to a battlefield i. Based
on the knapsack model, player B’s best response is
to select a subset S of battlefields with the maximum
possible payoff subject to

∑
i∈S ai ≤ M . Indeed this is

a linear constraint and thus the problem of computing
a (u, 1)-maxmin strategy can be formulated as a linear
program as follows: define K variables a1, a2, . . . , aK
to denote the number of troops of player A in each
of the K battlefields. Every strategy of player B
cannot get a payoff more than

∑
wi − u and thus any

subset of battlefields with a total weight of at least∑
wi − u should have a total number of troops more

than M . Of course, this adds an exponential number of
linear constraints to the LP, nonetheless, we show that
ellipsoid method can solve this program in polynomial
time.

Theorem 6.1 [restated]. For any given instance of con-
tinuous Colonel Blotto and any given u, there exists a
polynomial time algorithm to either find a (u, 1)-maxmin
strategy or report that no (u, 1)-maxmin strategy exists.

Furthermore, similar to the high-value, low-value
decomposition of the battlefields we described above,
we show that the problem for the case of (u, p)-maxmin
reduces to the case of uniform battlefield weights and
as a result, one can design a polynomial time algorithm
to provide a constant approximation of a (u, p)-maxmin
strategy.

Theorem 6.2 [restated]. Given that a (u, p)-maxmin
strategy exists for player A in an instance of continuous
Colonel Blotto, Algorithm 5 provides a (u/8, p/8)-
maxmin strategy.

Finally, in Section 7 we study the notion of (u, p)-
maxmin strategies for the auditing game. In the auditing
game, an instance of the Colonel Blotto game (such as
the US presidential election) is given and a hacker is
trying to meddle in the game in favor of one of the

players, say player A. Therefore, each strategy of the
hacker is to choose a subset of the battlefields in which
player A loses and flip the results of those battlefields
by hacking the system. The auditor, on the other
hand, wants to secure the game by establishing extra
security for up to m battlefields. If the auditor protects
a battlefield that the hacker attacks, she’ll catch the
attacker and thus the attacker receives a payoff of 0.
Otherwise, the payoff of the hacker is the total sum of
the weights of the states that she hacks. The game is
constant-sum and the summation of the payoffs of the
players is always the total number of electoral votes.
Note that both the auditor and the hacker are aware of
the strategies in the Colonel Blotto instance.

In Section 7, we seek to approximate a (u, p)-
maxmin strategy for the auditor in this game. We show
that for a given threshold utility u, one can find in
polynomial time a strategy for the auditor which is
at least (u, (1 − 1/e)p)-maxmin where for any (u, p′)-
maxmin strategy that exists for the auditor, we have
p′ ≤ p (i.e., p is an upper bound on the probability of
achieving minimum utility u). To this end, we define
a benchmark LP and make a connection between the
optimal solution of this LP and the highest probability
for which the auditor can obtain a payoff of at least
u. Next, we take the dual of the program and based
on a primal-dual argument, provide a strategy for the
auditor that guarantees a payoff of at least u with at
least a probability of q. Finally, we make a connection
between q and the solution of the benchmark LP and
argue that q is at least a 1 − 1/e fraction of p. This
yields the following theorem.

Theorem 7.1 [restated]. Given a minimum utility u
and an instance of the auditing game, there exists a
polynomial time algorithm to find a (u, (1 − 1/e)p)-
maxmin strategy for the auditor; where for any p′ > p,
no (u, p′)-maxmin strategy exists for the auditor.

Finally, we show a reduction from the auditing
game to an instance of the Colonel Blotto game when
the winner of each battlefield is specified by a given
function.

3 Preliminaries

Colonel Blotto. In the Colonel Blotto game, two
players A and B are competing over a number of
battlefields. We denote the number of battlefields by
K and denote by N and M the total troops of players
A and B, respectively. Associated to each battlefield
i is a weight wi which shows the amount of profit
a player wins if she wins that battlefield. This way,
every strategy of a player is a partitioning of her troops
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over the battlefields. In the discrete version of Colonel
Blotto, the number of troops that the players put in
the battlefields must be an integer. In contrast, in
the continuous version, a battlefield may contain any
fraction of the troops. Player A wins a battlefield i if she
puts more troops in that battlefield than her opponent.
For simplicity, we break the ties in favor of player B,
that is, if player B puts as many troops as player A’s
troops in a battlefield i, then she wins that battlefield
and receives a payoff of wi and player A receives a payoff
of 0 on that battlefield. The final payoff of the players
in this game is the total payoff that they receive over
all battlefields. For a pair of pure strategies x and y, we
denote by uA(x, y) and uB(x, y) the payoff of the players
if they play x and y respectively. Similarly, for a pair of
mixed strategies X and Y we have

uA(X,Y ) = E
x∼X,y∼Y

[uA(x, y)],

uB(X,Y ) = E
x∼X,y∼Y

[uB(x, y)].

Auditing game. Suppose there are K states in a
presidential election race, each corresponding to a num-
ber of electoral votes. An outsider wants to hack into
the system and change the outcome of the election in fa-
vor of the losing candidate. Moreover, an auditor wants
to make recounts to avoid possible frauds. Refering to
the players by the hacker and the auditor, we assume
the simplest and full information case, that is both the
hacker and the auditor have access to the exact results.4

If the auditor conducts an inspection in a state whose
winner is manipulated by the hacker, she catches the
hacker and thus she wins the game (i.e., receives the
maximum possible utility). On the other hand, if the
hacker survives the inspection, her utility would be the
number of electoral votes that she hacks in favor of her
candidate.

We formally define the game as follows. Given in
the input, is a set {s1, s2, . . . , sK} of K states. For
each state si, a value vi is specified in the input, which
is the number of its electoral votes if it is won by the
losing candidate (i.e., the hacker’s candidate) and zero
otherwise. A limit m on the number of states that can
be inspected by the auditor is also given in the input.
A strategy of the hacker is a subset H of the states to
hack, and a strategy of the auditor is a set A of size at
most m of the states to audit. The game is constant sum
and the sum of utilities is always

∑
vi. If the attacker

is caught (i.e., if H ∩A 6= ∅), the auditor receives utility∑
vi and the attacker receives utility 0. However, if

the attacker is not caught (i.e., if H ∩ A = ∅), she

4In practice, this could be obtained by polls.

receives utility
∑
si∈H vi and the auditor receives utility∑

vi −
∑
si∈H vi.

Similar to the notation that we use for the Colonel
Blotto problem, for (possibly mixed) strategies x and
y, we denote by uA(x, y) and uB(x, y) the payoff of the
auditor and the hacker if they play x and y respectively.

(u, p)-maxmin strategies. We call a strategy of a
player, a (u, p)-maxmin, if it guarantees a utility of at
least u for her with probability at least p, regardless of
her opponent’s strategy. In other words, a strategy X
is (u, p)-maxmin if for every (possibly mixed) strategy
Y of the opponent we have

Pr
x∼X,y∼Y

[uA(x, y) ≥ u] ≥ p.

4 Maximizing Expectation vs (u, p)-maxmin
Strategies

In this section, we compare algorithms that are designed
to maximize the expected payoff to the algorithms that
are specifically designed to approximate a (u, p)-maxmin
strategy from two perspectives: (i) the approximation
factor that they guarantee; (ii) their computational
complexity.

4.1 Comparison of the Approximation Factors
As it was already mentioned, our main results are algo-
rithms that approximate the problem of finding a (u, p)-
maxmin strategy. Given that at least for the Colonel
Blotto problem, exact algorithms that maximize the ex-
pected payoff exist [1, 4], one might be interested in the
possible approximation factor that an expectation max-
imizer algorithm guarantees, or to see whether designing
new algorithms is really needed.

Conceptually, the main difference between an ex-
pectation maximizer algorithm and a (u, p)-maxmin op-
timizer, is in that the (u, p)-maxmin optimizer, in ad-
dition to the instance of the game, takes u and p as
extra parameters in the input and designs a strategy
accordingly, whereas the expectation maximizer returns
a single strategy for the game instance. Therefore an
expectation maximizer would achieve a relatively good
approximation of our problem, only if it does so for all
possible values of u and p.

Unsurprisingly, this is not the case. The following
theorem implies that the expectation maximizers do not
guarantee any constant approximation for (u, p)-maxmin
problem.

Theorem 4.1. For any given u, p and arbitrarily small
constants 0 < α < 1 and 0 < β < 1, there exists an in-
stance of Colonel Blotto (both discrete and continuous),
where for any approximate (α′u, β′p)-maxmin strategy
that an expectation maximizer algorithm returns, either
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α′ < α or β′ < β.

Proof. We construct a Colonel Blotto instance in
such a way that guarantees existence of a (u, p)-maxmin
strategy for player A. Then show that an expectation
maximizer algorithm does not achieve anything strickly
better than an (αu, βp)-maxmin solution.

Construct the following Colonel Blotto instance: as
usual, denote the troops of player A by N and assume
that player B has M = N/(βp)− 1 troops.5 The game
has K = 1/(βp) +M/(1− p) battlefields, where 1/(βp)
of which are called high-value battlefields and the rest
are called low-value battlefields. The weight of a high-
value battlefield is a sufficiently large number which we
denote by ∞ (suffices if ∞ > Nu) and the weight of a
low-value battlefield is u.

We first show that in the mentioned instance, player
A has a (u, p)-maxmin strategy. The strategy is as
follows: choose one low-value battlefield uniformly at
random and put N troops in it. Since there are
M/(1 − p) low-value battlefields, in any pure strategy,
player B can put a non-zero number of troops in at most
a (1 − p) fraction of the low-value battlefields. Hence
player A wins a low-value battlefield with probability at
least 1 − (1 − p) = p. Since the low-value battlefields
have weight u, this is a (u, p)-maxmin strategy.

However, if the goal of player A is to achieve
the maximum expected payoff she will end up playing
a totally different strategy. Since M < N/(βp),
there exists at least one high-value battlefield in which
player B puts less than N troops, so the strategy that
maximizes the expected payoff of player A is to choose
a high-value battlefield uniformly at random and put N
troops in it. This guarantees that with probability at
least βp, player A wins a high-value battlefield, which
achieves an expected payoff of at least βp ·∞. It is easy
to see that no other strategy of player A achieves this
expected payoff. Note that this strategy gets a non-
zero payoff with probability at most βp. Hence for any
αu > 0, it does not achieve any strategy that is strictly
better than (αu, βp)-maxmin. �

However, we show that for the special case where
a (u, p)-maxmin strategy, for sufficiently large values
of u and p is guaranteed to exist, the solution of an
expectation maximizer is a good approximation of it.

Lemma 4.1. Let W := Σki=1wi denote the total weight
of the battlefields. Given that there exists a (u, p)-
maxmin strategy of player A where u ≥ W

α and p ≥ 1
β

5Assume for ease of exposition that all the fractions that are

used in constructing the strategy are integers, otherwise consider
a smaller value for β for which that holds.

for α, β ≥ 1 the expected maximizer returns a ( u2β ,
p
2α )-

maxmin strategy.

Proof. Let U denote the maximum expected utility
of player A. Since there exist a (u, p)-maxmin strategy
of player A, U ≥ u · p. Note that u · p ≥ W

αβ ,
and the maximum payoff that a player achieves from
playing a strategy is W . Let q denote the probability
with which player A achieves more than u

2β utility in
the strategy with expected utility of U . Therefore,
U < (1 − q) · u

2β + qW . Assume that q < p
2α then

we obtain a contradiction. In this case,

U < (1− p

2α
) · u

2β
+

p

2α
W ≤ (1− p

2α
)
W

2αβ
+

W

2αβ
<
W

αβ

holds which contradicts U ≥ W
αβ , so the expected

maximizer strategy is a ( u2β ,
p
2α )-maxmin strategy of

player A. �

It needs to be mentioned that our approximation
algorithms for the Colonel Blotto game take both u and
p in the input, with the assumption that a (u, p)-maxmin
strategy is guaranteed to exist. A more constructive
approach (as taken in Theorem 7.1 for the auditing
game) is to only take u (and not p) along with the game
instance in the input and approximate the maximum
probability with which one can achieve a guaranteed
utility of u.

4.2 Comparison of their Computational Com-
plexity Let us again focus on the Colonel Blotto prob-
lem. It has been shown in the literature that the prob-
lem of finding a maxmin strategy that maximizes the
expected payoff could be efficiently solved in polynomial
time [1, 4]. The goal of this section is to illustrate why
the problem of finding a (u, p)-maxmin strategy seems
to be computationally harder.

In particular, we show that while the “best re-
sponse” could easily be computed in polynomial time
when the goal is to maximize the expected payoff [4], it
is NP-hard to find the best-response for the case where
the goal is to give a (u, p)-maxmin strategy.

Although the hardness of finding the best response
does not necessarily imply any hardness result for the
actual game, it is often a good indicator of how hard
the game is to solve. We refer interested readers to the
paper of Xu [35] which, for a large family of games,
proves solving the actual game is as hard as finding the
best response.

Assume a mixed strategy sB of player B (as a list
of pure strategies in its support and their associated
probabilities), and a minimum utility u are given; the
best response problem for the Colonel Blotto game,
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denoted by BR, is to find a pure strategy sA of player
A which maximizes Pr[uA(sA, sB) ≥ u].

Theorem 4.2. There is no polynomial time algorithm
to solve BR unless P=NP.

Proof. To prove this hardness, we reduce max-coverage
problem to BR. A number k and a collection of sets
S = {S1, S2, . . . , Sn} are given. The maximum coverage
problem is to find a subset S′ ⊆ S of the collection, such
that |S′| ≤ k and the number of covered elements (i.e.,
| ∪Si∈S′ Si|) is maximized.

Consider an instance of Colonel Blotto game with
|S| battlefields of the same weight where the first player
has k troops and the second player has a sufficiently
large number of troops.

Let E = ∪Si∈SSi denote the set of all items in the
given max coverage instance. The support of the mixed
strategy sB of player B contains |E| pure strategies, each
corresponding to an item and player B plays one of these
pure strategies uniformly at random (i.e., all of the pure
strategies are played with the same probability). For the
corresponding pure strategy to an item e ∈ E, we put
k + 1 troops in each battlefield that its corresponding
set does not contain e and put zero troops in all other
battlefields.

Assume that our goal is to find the best response of
player A that maximizes the probability of winning at
least one battlefield. Let p denote this probability. We
claim p|E| is indeed the solution of the max-coverage
instance. Since player B puts either 0 troops or k + 1
troops in each battlefield, it suffices for player A to put
either 0 or 1 troops in each battlefield. To see this recall
that player A has only k troops and clearly cannot win
the battlefields in which player B puts k + 1 troops. If
player A puts more than zero troops in a battlefield,
we choose its corresponding set in the max-coverage
problem. Since there are at most k such battlefields,
it is indeed a valid solution and it is easy to see that it
maximizes the number of covered elements. �

5 Discrete Colonel Blotto

5.1 Approximating (u, 1)-maxmin In this section
we study the problem of finding a (u, 1)-maxmin strategy
for player A with the maximum possible u. In this
case, u is also called the guaranteed payoff that player A
achieves in an instance of Colonel Blotto game. It is easy
to see that the maximum guaranteed payoff of player A
in a Colonel Blotto game, denoted by opt is equal to
the minimax strategy in a slightly modified version of
this game which is as follows: player A first chooses a
pure strategy and reveals it to her opponent, then player
B, based on this observation, plays a pure strategy that

maximizes her payoff. In this game if N ≤ M , there
exists no strategy of player A that guarantees a payoff
more than zero for this player, therefore in this section
we assume that N > M .

Let SA be an arbitrary pure strategy of player A,
and let strategy RB be a best response of player B to
SA. We first give an algorithm that finds a response
R′B of player B such that uB(SA, R

′
B) ≥ uB(SA, RB) −

maxKi=1 wi. Then, by fixing this algorithm for player B,
we are able to find a strategy of player A that guarantees
at least half of the maximum guaranteed payoff of player
A.

Algorithm 1 An approximation algorithm for the best
response of player B

1: Let wi denote the weight of the i-th battlefield and
let si denote the number of troops that player A has
in this battlefield.

2: Sort the battlefields such that for any i ∈ [K − 1],
wi

si
≥ wi+1

si+1

3: i← 1
4: while M ≥ si do
5: Player B puts si troops in the i-th battlefield
6: M ←M − si
7: i← i+ 1

Lemma 5.1. Let R′B denote the strategy that Algorithm
1 provides for player B, and let RB denote her best
response against the strategy of player A, which is
denoted by S. Thus, we have uB(S,R′B) ≥ uB(S,RB)−
maxKi=1 wi.

Proof. Let si denote the number of troops that player
A puts in the i-th battlefield while playing strategy S,
and let ri := wi/si denote the value of a battlefield.

The algorithm first sorts the battlefields in the
decreasing order of their values. Assume w.l.g. that
the initial order is the desired one, i.e., ri−1 ≥ ri.
Starting from the first battlefield in the sorted order,
player B puts as many troops as player A has until
there are no more troops left for player B. Let the k-
th battlefield be the stopping point of the algorithm.
Clearly uB(S,R′B) = Σk−1i=1 wi. Moreover, one can easily
see that uB(S,RB) ≤ Σki=1wi. Therefore uB(S,R′B) ≥
uB(S,RB)−maxKi=1 wi as desired. �

Theorem 5.1. There exists a polynomial time algo-
rithm that gives a (u/2, 1)-maxmin strategy of player A,
assuming that u is the maximum guaranteed payoff of
player A.

Proof. We first define a new optimization problem,
then we prove that the solution to that problem is also a
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2-approximation solution for the maximum guaranteed
payoff of player A (i.e., opt). For any strategy s of
player A, let U(s) denote the payoff that player A
achieves if the response of player B to strategy s is
determined by Algorithm 1. The optimization problem
is to find a strategy s of player A that maximizes U(s).
Let S denote the set of all possible strategies of player A,
and let opt′ = maxs∈S U(s). Since this is a constant-
sum game, by Lemma 5.1, opt′ ≤ opt + maxKi=1 wi.
Moreover, opt ≥ maxKi=1 wi since N > M , and player
A can win the battlefield with maximum weight by
putting all her troops in that battlefield. Therefore,
opt′ ≤ 2opt, and to prove this lemma it suffices to
give an algorithm that finds opt′. Algorithm 2 finds
opt′ via dynamic programming.

Algorithm 2 A 2-approximation algorithm for the
guaranteed payoff of player A

1: function ApproximateGuaranteedPayoff
2: Let wk denote the weight of k-th battlefild.
3: s← −∞
4: for k in [K] do
5: for m in [N ] do
6: s← max (s,FindBestPayoff(m, k))

7: return s
8: function FindBestPayoff(m, k)
9: r ← wk/m

10: U [0][0][0]← 0
11: for any i in [K], a in [0, N −m] and b in [0,M ]

do
12: U [i][a][b]← −∞
13: if i = k then
14: U [i][a][b]← U [i− 1][a−m][b] + wi
15: else
16: for t in {0, . . . ,min (a, b, dwi/re − 1)} do
17: U [i][a][b]←

max (U [i][a][b], U [i− 1][a− t][b− t])
18: if a ≥ dwi/re then
19: U [i][a][b]←

max (U [i][a][b], U [i− 1][a− dwi/re][b] + wi)

20: return maxm−1i=0 U [K][N ][M − i]

For any strategy s of player A, let si denote
the number of troops that player A puts in the i-th
battlefield and let B(s) denote the set of battlefields
that player A wins given that the response of player
B is determined by Algorithm 1. In addition let
b(s) := arg maxi∈B(s)

wi

si
be the first battlefield in

which player B loses (in the sorted list of battlefields
in Algorithm 1) and let t(s) := sb(s). Furthermore,
let S(k,m) be a subset of strategies of player A where

b(s) = k and t(s) = m for any s ∈ S(k,m). Function
FindBestPayoff, for given inputs 1 ≤ k ≤ K and
0 ≤ m ≤ N finds maxs∈S(k,m) U(s). Finally, in function
ApproximateGuaranteedPayoff, we find opt′ by
calling function FindBestPayoff for all sets S(k,m)
such that 1 ≤ k ≤ and 0 ≤ m ≤ N , and returning the
maximum answer.

Let UA(j, s) denote the payoff that player A
achieves in the j-th battlefield if the response of player
B to strategy s is determined by Algorithm 1, and let
P (i, a, b) denote the set of strategies of player A such
that for any s ∈ P (i, a, b), Σij=1sj = a, and in the re-
sponse to s that is determined by Algorithm 1, player
B puts exactly b troops in the first i battlefields.

Claim 5.1. In Algorithm 2,

U [i][a][b] = max
s∈S(k,m)∩P (i,a,b)

Σij=1U
A(j, s).

Proof. We use induction on i.

(i). Induction hypothesis: for any 1 ≤ i ≤ K,
and any arbitrary a′ and b′ such that 0 ≤
a′ ≤ N and 0 ≤ b′ ≤ M , U [i][a′][b′] =
maxs∈S(k,m)∩P (i,a′,b′) Σij=1U

A(j, s).

(ii). Base case: U [0][0][0] = 0 and all the other cells for
i = 0 are undefined (we assume that the value of
any undefined cell is equal to −∞).

(iii). For the induction step we prove the correctness of
hypothesis for i+ 1: It is easy to verify if i+ 1 = k
since by the constraints, player A puts exactly m
troops and player B puts no troops in the k-th
battlefield, therefore U [i][a][b] = U [i−1][a−m][b]+
wi. However, if i + 1 6= k, there are different
possible cases for the number of troops that player
A puts in this battlefield, denoted by si. As a
result she either gains wi+1 or 0 utility in this
battlefield. By Algorithm 1, if wi+1

si+1
≥ wk

m player B

wins this battlefield, otherwise she loses it. In other
words, if si+1 <

m×wi+1

wk
, by Algorithm 1, player

B, puts si+1 troops in this battlefield and wins it.
These cases are handled in line 17 of the function
FindBestPayoff. In addition, if si+1 ≥ m×wi+1

wk
,

by Algorithm 1, player B puts no troop in it so
player A wins it. Also, player A never puts more
than dm×wi+1

wk
e in this battlefield since any number

of troops more than this results in the same payoff
(winning wi+1). This case is handled in line 19 of
the algorithm. To sum up, the induction step is
proved.

�
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To complete the proof, it suffices to prove
that function FindBestPayoff correctly finds
maxs∈S(k,m) U(s). Note that the output of function

FindBestPayoff is maxm−1i=0 U [K][N ][M − i], hence
we need to prove

(5.1) max
s∈S(k,m)

U(s) =
m−1
max
i=0

U [K][N ][M − i].

Claim 5.1 is indeed the main technical ingredient that
we use to prove (5.1). The first equality in the following
equation comes from Claim 5.1.

m−1
max
i=0

U [K][N ][M − i]

=
m−1
max
i=0

(
max

s∈S(k,m)∩P (K,A,B−i)
ΣKj=1U

A(j, s)
)

(5.2)

=
m−1
max
i=0

(
max

s∈S(k,m)∩P (K,A,B−i)
U(s)

)
(5.3)

= max
s∈S(k,m)∩(∪m−1

i=0 P (K,A,B−i))
U(s).(5.4)

Note that player B may have at most m − 1 unused
troops since otherwise she could use them to win
battlefield k which contradicts the assumption of this
function. This implies S(k,m) ⊆ ∪m−1i=0 P (K,A,B − i)
and therefore by (5.4) we obtain (5.1) as desired. �

5.2 Approximating (u, p)-maxmin In this section,
we present a polynomial time algorithm for approxi-
mating a (u, p)-maxmin strategy in the Colonel Blotto
game. More precisely, given that there exists a (u, p)-
maxmin strategy for player A, we present a polynomial
time algorithm to find a (O(u/(logK)), O(p))-maxmin
strategy. In Section 5.2.1 we study the problem for a
special case where wi = 1 for all i ∈ [K]. We show
that in this case, if K and N are large enough then
player A can win a fraction of the battlefields propor-
tional to the ratio of N over M . We also argue that in
some cases, no strategy can be (u, p)-maxmin for player
A with u, p > 0. We then use these observations to
obtain a (u/8, p/4)-maxmin strategy for player A in the
uniform setting and a (u/(16(dlogKe+1)), p/8)-maxmin
strategy for the general setting.

5.2.1 The Case of Uniform Weights A special
case of the problem is when all weights are uniform.
We study this case in this section. We assume w.l.g.
that all weights are equal to 1 since one can always
satisfy this condition by scaling the weights. Given that
there exists a (u, p)-maxmin strategy for player A, we
present a strategy for player A that is at least (u/8, p/4)-
maxmin. Recall that we denote the number of troops of
players A and B by N and M , respectively. Our first

observation is that if both u and p are non-zero then
p ≤ 4(K − bM/Nc)/K holds.

Lemma 5.2. Given that there exists a (u, p)-maxmin
strategy for player A with u, p > 0, then p ≤ 2(K −
bM/Nc)/K holds.

Proof. We assume w.l.g. that bM/Nc ≥ 1 (otherwise
p ≤ 2(K − bM/Nc)/K = 2 trivially holds). Also K ≥
2bM/Nc implies 2(K−bM/Nc)/K ≥ 1 which yields p ≤
2(K−bM/Nc)/K. Suppose for the sake of contradiction
that the conditions doesn’t hold. Therefore we have
K < 2bM/Nc and also p > 2(K − bM/Nc)/K. We
show that in this case, no strategy of player A can be
(u, p)-maxmin for u > 0.

IfK ≤ bM/Nc then player B can putN troops in all
battlefields and always prevent player A from winning
any battlefield. Thus, K > bM/Nc. Now if player B
plays the following strategy, the probability that player
A wins a single battlefield is smaller than p: randomly
choose 2(K − bM/Nc) battlefields and put N/2 ( =
bN/2c in the discrete version of the game) troops in
them and put N troops in the rest of the battlefields.
Recall that K < 2bM/Nc and thus 2(K−bM/Nc) does
not exceed the number of battlefields. This requires at
most the total number of

2(K − bM/Nc)N/2 + (2bM/Nc −K)N

≤ bM/Nc(2N − 2N/2) +K(2N/2−N)

= bM/Nc(2N −N) +K(N −N)

= bM/NcN
≤M

troops. Notice that in order for a strategy of player
A to win a battlefield, it needs to put more than N/2
troops in that battlefield. Moreover, each pure strategy
of player A can put more than N/2 troops in at most
one battlefield. Thus, a pure strategy of player A gains
a non-zero payoff only if player B puts at most N/2
troops in that chosen battlefild. This probability is
bounded by 2(K − bM/Nc)/K for each battlefield due
to the strategy of player B. Therefore, player A can
get a non-zero payoff with probability no more than
2(K − bM/Nc)/K. This contradicts the existence of
a (u, p)-maxmin strategy for player A with u > 0 and
p > 2(K − bM/Nc)/K. �

Although we consider Lemma 5.2 in the uniform
and discrete setting, the proof doesn’t rely on any
of these conditions. Thus, Lemma 5.2 holds for the
general setting (both continuous and discrete). Based
on Lemma 5.2, we present a simple algorithm and
show that the strategy obtained from this algorithm
is at least (u/8, p/4)-maxmin. In our algorithm, if
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K ≤ 2bM/Nc then we randomly select a battlefield and
put N troops in it. Otherwise, we find the smallest t
such that t(bK/2c+ 1) > M and put t troops in bN/tc
battlefields uniformly at random. The logic behind
this is that we choose a large enough t to make sure
player B can put t troops in no more than bK/2c
battlefields. Therefore, when player A puts t troops in
a random battlefield, we can argue that she wins that
battlefield with probability at least 1/2 regardless of
player B’s strategy. We use this fact to show that player
A wins at least d1/8 min{N,K,K(N/M)}e battlefields
with probability at least 1/2. Finally we provide almost
matching upper bounds to show the tightness of our
solution. We first provide a lower bound in Lemma 5.3
on the payoff of this strategy against any response of
player B.

Algorithm 3 An algorithm to find a (u/8, p/4)-maxmin
strategy for player A

1: if K < 2bM/Nc then
2: Choose a battlefield i uniformly at random.
3: Put N troops in battlefield i.
4: else
5: t← 0.
6: while t(bK/2c+ 1) ≤M do
7: t← t+ 1

8: if N ≥ Kt then
9: put t troops in all battlefields

10: else
11: Choose bN/tc battlefields a1, a2, . . . , abN/tc

uniformly at random.
12: Put t troops in every battlefield ai.

Lemma 5.3. The strategy of Algorithm 3 provides the
following guarantees for player A in any instance of
discrete Colonel Blotto game:

• If K < 2bM/Nc, player A wins a battlefield with
probability at least (K − bM/Nc)/K.

• If K ≥ 2bM/Nc, player A wins
d1/8 min{N,K,K(N/M)}e battlefields with
probability at least 1/2.

Proof. We prove each of the cases separately. If
K < 2bM/Nc, player A’s strategy is to randomly choose
a battlefield and put all her troops in it. Notice that
any strategy of player B can put N troops in at most
bM/Nc battlefields. Thus, with probability at least
(K − bM/Nc)/K, player B puts fewer than N troops
in the selected battlefield of player A and thus player A
wins that battlefield.

If K ≥ 2bM/Nc, Algorithm 3 finds the smallest
t such that t(bK/2c + 1) > M and puts t troops in

min{K, bN/tc} randomly selected battlefields. As we
mentioned earlier, since t(bK/2c + 1) > M , player B
can put t troops in no more than bK/2c battlefields
and thus she puts fewer than t troops in at least half of
the battlefields. If K ≤ bN/tc, player A puts t troops
in all battlefields and since player B can protect at most
bK/2c of the battlefields, player A wins at least dK/2e
battlefields with probability 1. If K > bN/tc, player
A wins any of the selected battlefields with pobability
at least 1/2 and therefore, with probability at least
1/2, player A wins at least dbN/tc/2e of the bN/tc
battlefields wherein she puts t troops. The rest of the
proof follows from a mathematical observation. In the
interest of space we omit the proof of Observation 5.1
here.

Observation 5.1. Let N , M , and K be three positive
integer numbers such that K ≥ 2bM/Nc and t be the
smallest integer number such that t(bK/2c + 1) > M .
Then we have

dbN/tc/2e ≥ d1/8 min{N,K(N/M)}e.

�

To show that Algorithm 3 provides a strategy
competitive to that of the optimal, we present two upper
bounds for each of the cases separately.

Lemma 5.4. Given that there exists a (u, p)-maxmin
strategy for player A with non-zero u and p in an in-
stance of discrete Colonel Blotto with uniform weights,
for K < 2bM/Nc we have u ≤ 2 and p ≤ 2(K −
bM/Nc)/K.

Proof. p ≤ 2(K − bM/Nc)/K follows directly from
Lemma 5.2. Next we argue that in this case u is also
bounded by 2. To this end, suppose that player B puts
bM/Kc troops in every battlefield. This way, in order
for player A to win a battlefield, she should put at least
bM/Kc + 1 ≥ dM/Ke troops in that battlefield. Since
K < 2bM/Nc, then dM/Ke ≥ N/2 and thus player A
can never achieve a payoff more than 2. �

Lemma 5.5. Given that there exists a (u, p)-maxmin
strategy for player A with non-zero u and p in an in-
stance of discrete Colonel Blotto with uniform weights,
for K ≥ 2bM/Nc we have u ≤ min{K,N,K(N/M)}.

Proof. u ≤ K and u ≤ N hold since there are at
most K battlefields to win and player A can put non-
zero troops in at most N of them. Therefore, the only
non-trivial part is to show u ≤ K(N/M). We show
that no strategy of player A can achieve a payoff more
than K(N/M) with non-zero probability. To this end,
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suppose that player B puts bM/Kc troops in every
battlefield. This way, in order for player A to win a
battlefield, she has to put at least bM/Kc+1 ≥ dM/Ke
troops in that battlefield. Thus, any strategy of player A
wins no more than N/dM/Ke ≤ K/(M/N) battlefields.
Therefore, u is bounded by K/(M/N). �

Lemma 5.3 along with the upper bounds provided
in Lemmas 5.4 and 5.5 proves that the strategy of
Algorithm 3 is competitive with the optimal strategy
of player A. As a corollary of Lemmas 5.3, 5.4, and 5.5,
we get the following theorem.

Theorem 5.2. Given that there exists a (u, p)-maxmin
strategy for player A in an instance of discrete Colonel
Blotto with uniform weights, Algorithm 3 provides a
(u/8, p/2)-maxmin strategy.

5.2.2 The General Setting We showed in Section
5.2.1 that when all the weights are equal to 1, there is
a polynomial time solution for finding an approximate
(u, p)-maxmin solution for a given u and p. In this
section, we extend this result to the case of non-uniform
weights. The main ingredient of our proposal is a
mathematical argument which we state in Lemma 5.6.

Lemma 5.6. Given n non-negative values a1 ≥ a2 ≥
a3 ≥ . . . ≥ an, there exists a k with 1 ≤ k ≤ n such that

kak ≥ 1/(dlog ne+ 1)

n∑
i=1

ai.

Proof. We assume w.l.g. that n = 2k − 1 for some k
(otherwise we add enough 0’s to the end of the sequence
to satisfy this condition). We divide the sequence into
dlog ne buckets as follows: The first bucket contains
only a1. The second bucket contains a2 and a3. More
precisely, the i’th bucket contains all variables from
a2i−1 to a2i−1. Since the variables are non-decreasing,
for each bucket i, sum of the variables inside it is upper
bounded by 2i−1a2i−1 . Since we have dlog ne buckets,
the total sum of the values of at least one bucket is no
less than (

∑
ai)/dlog ne and therefore at least for one

i we have 2i−1a2i−1 ≥ (
∑
ai)/dlog ne. An extra +1

appears in the guarantee because of the adjustment to
n that we made in the beginning of the proof. �

Given that player A has a (u, p)-maxmin strategy,
we present a randomized strategy for player A and show
that this strategy is at least (u/(16(dlogKe+ 1)), p/8)-
maxmin. In our strategy, we split the battlefields into
two categories high-value and low-value. A battlefield is
called high-value if the winner of that battlefield obtains
a payoff of at least u/(16(dlog ne + 1)) and low-value
otherwise. We denote the high-value battlefields by

A = {a1, a2, . . . , a|A|} and the low-value battlefields by
B = {b1, b2, . . . , b|B|}. We assume w.l.g. that both ai’s
and bi’s are sorted in non-decreasing order according
to the weights of the battlefields. In other words,
wa1 ≥ wa2 ≥ . . . ≥ wa|A| and wb1 ≥ wb2 ≥ . . . ≥ wb|B| .
Let M ′ be the smallest number of troops that player B
needs to put in the high-value battlefields to make sure
player A wins any of such battlefields with probability
less than p due to the upperbound of Lemma 5.2 . In
our proposal, with probability 1/2 we play Algorithm 3
on the high-value battlefields with the assumption that
player B has M ′ − 1 troops. Also, with probability
1/2 we play Algorithm 3 on a prefix of battlefields
b1, b2, . . . , bk as if player B had M −M ′ troops. Note
that in both cases, we assume that the weights of all
battlefields are equal to 1 when using Algorithm 3. If
any of A or B is empty, we only play on the non-empty
set. If M ′ > M , we only play on battlefields of set A. A
formal description of our proposal is given in Algorithm
4.

Algorithm 4 An algorithm to find a (u/(16(dlogKe+
1)), p/4)-maxmin strategy for player A

1: A = {a1, a2, . . . , a|A|} ← the set of battlefield with
weight at least u/(16(dlog ne+ 1))

2: B = {b1, b2, . . . , b|B|} ← the set of battlefield with
weight less than u/(16(dlog ne+ 1))

3: M ′ ← 0
4: while 2(|A| − bM ′/Nc)/|A| ≥ p do
5: M ′ ←M ′ + 1

6: coin← either 0 or 1 with equal probability
7: if coin = 0 and |A| = 0 then
8: coin← 1
9: if coin = 1 and (|B| = 0 or M ′ > M) then

10: coin← 0
11: if coin = 0 then
12: Run Algorithm 3 on the battlefields

a1, a2, . . . , a|A| with N and M ′ − 1 troops for
the players.

13: else
14: if N ≥M −M ′ then
15: k ← arg max

min{|B|,N}
i=1 iwbi

16: else
17: k ← arg max

min{|B|,M−M ′}
i=1 iwbi

18: Run Algorithm 3 on the battlefields b1, b2, . . . , bk
with N and M −M ′ troops for the players.

Our claim is that Algorithm 4 is (u/(16(dlogKe +
1)), p/8)-maxmin. Before we provide a formal proof,
we mention the high level idea briefly. Notice that in
Algorithm 4 we flip a coin and attack each set of the
battlefields with probability 1/2. The best response
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of player B is always a pure strategy. Such a pure
strategy either puts fewer than M ′ troops in the high-
value battlefields or no more than M−M ′ troops in the
low-value battlefields. In each case, we argue that the
strategy of Algorithm 4 performs well with probability
at least p/4.

Theorem 5.3. Given that a (u, p)-maxmin strategy ex-
ists for player A in an instance of discrete Colonel
Blotto, Algorithm 4 provides a (u/(16(dlogKe +
1)), p/4)-maxmin strategy.

Proof. In order to show that the strategy obtained
from Algorithm 4 is (u/(16(dlogKe+ 1)), p/4)-maxmin,
we show that it achieves a payoff at least (16(dlogKe+
1)) with probability at least p/4 against any pure
strategy of player B. To this end, we consider two cases.
Either the pure strategy of player B puts fewer than M ′

troops in the high-value battlefields, or puts no more
than M −M ′ troops in the low-value battlefields. We
investigate each of the possibilities in the following:

Fewer than M ′ troops in the high-value bat-
tlefields: Line 4 of Algorithm 4 terminates right after
2(|A|−bM ′/Nc)/|A| < p happens. Therefore, for M ′−1
troops we have 2(|A|−b(M ′−1)/Nc)/|A| ≥ p. It follows
from Lemma 5.3 that if player B puts M ′− 1 (or fewer)
troops in these battlefields and player A plays according
to Algorithm 3, she wins at least a battlefield with prob-
ability at least min{1/2, (|A|−b(M ′−1)/Nc)/|A|} which
is at least p/2. Moreover, the payoff she achieves from
winning any of the battlefields is at least u(16(dlogKe+
1)). Since the strategy of Algorithm 4 plays on the high-
value battlefields with probability (at least) 1/2, this
guarantees a payoff of u/(16(dlogKe + 1)) with proba-
bility at least p/4.

No more than M−M ′ troops in the low-value
battlefields: We first provide some lower bounds on
sum of the weights of the low-value battlefields. We
show that unless the total weight of certain battlefields
is lower bounded by fixed values, player B can play in
a way to prevent player A from obtaining a payoff of at
least u with probability at least p. Recall that due to
Line 4 of Algorithm 4, 2(|A| − bM ′/Nc)/|A| < p holds.
It follows from Lemma 5.2 that player B can put M ′

troops in the high-value battlefields to make sure player
A wins no high-value battlefield with probability at least
1− p. Therefore, efficient alloctations of the remaining
M −M ′ troops of player B to the low-value battlefields
imply:

• If N ≤ |B| then wb1 + wb2 + . . .+ wbN ≥ u since a
(u, p)-maxmin stratey of the player A should obtain
at least a payoff of u from the low-value battlefields.

• wb1 + wb2 + . . . + wb|B| ≥ u(M − M ′)/N since

otherwise the following strategy of player B can
prevent player A from achieving a payoff of u with
non-zero probability: Let W =

∑
wbi be sum

of the weights of the low-value battlefields. Put
b(M − M ′)wbi/W c troops in every battlefield bi.
Note that this requires no more than M−M ′ troops
since∑

(M −M ′)wbi/W = (M −M ′)(
∑

wbi)/W

= (M −M ′)W/W = M −M ′.

In addition to this, in order for player A to win
a battlefield bi, she has to put at least b(M −
M ′)wbi/W c + 1 ≥ d(M − M ′)wbi/W e troops in
that battlefield. Therefore, the ratio of the payoff
over the number of necessary troop to win for each
battlefield is at least W/(M −M ′) and thus player
A can obtain no more than WN/(M −M ′) payoff.
This implies W ≥ u(M − M ′)/N provided that
there exists a (u, p)-maxmin strategy for player A.

• If N ≤ M − M ′ ≤ |B| then wb1 + wb2 + . . . +
wb|M−M′| ≥ u(M −M ′)/N : This follows from an
argument similar to the one just stated. Suppose
for the sake of contradiction that wb1 + wb2 +
. . . + wb|M−M′| < u(M −M ′)/N . We define W =∑M−M ′
i=1 wbi and propose the following strategy

for player B. For each 1 ≤ i ≤ M − M ′, put
b(M −M ′)wbi/W c troops in battlefield bi and put
no troops in the rest of the low value battlefields.
This way, for each such battlefield the ratio of
payoff per troop necessary to win that battlefield is
bounded by W/(M −M ′) for player A. Moreover,
since we assume the weights of the battlefields
are non-decreasing, we have wbi ≤ W/(M −M ′)
for i > M − M ′ and thus winning each of those
battlefields has a payoff of at most W/(M −M ′)
for player A. Therefore, no strategy of player A
can achieve a payoff more than NW/(M − M ′)
against such a strategy of player B. This implies
that wb1 + wb2 + . . . + wb|M−M′| ≥ u(M −M ′)/N
provided that there exists a (u, p)-maxmin strategy
for player A in this game.

The above lower bounds along with Lemma 5.6 imply
that

kwbk ≥ umax{1, (M −M ′)/N}/(dlog |B|e+ 1).

Moreover, k < 2b(M − M ′)/Nc cannot hold since
the weight of each low-value battlefield is bounded
by u/(16dlogKe + 1). Thus, if player A plays Algo-
rithm 3 on battlefields b2, b2, . . . , bk she wins at least
d1/8 min{N, k, k(N/(M −M ′))}e of them with proba-
bility at least 1/2 due to Lemma 5.3. This provides
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player A with a payoff of at least u/(16(dlogKe + 1))
against any pure strategy of player B that puts no
more than M −M ′ troops in the low-value battlefields.
Since Algorithm 4 plays on the low-value battlefields
with probability at least 1/2, this guarantees a payoff
of u/(16(dlogKe+ 1)) with probability at least 1/4. �

6 Continuous Colonel Blotto

In this section we study the continuous version of the
Colonel Blotto game. In this version we relax the
assumption that the number of troops that a player
puts in a battlefield is an integer. In fact, for certain
applications (e.g., where money is the resource that is to
be distributed among battlefields) the continuous model
is more realistic.6 We first show in Section 6.1 that
it is possible to find a (u, 1)-maxmin strategy for each
player in the continuous Colonel Blotto in polynomial
time or report that no such strategy exists. We also
give an approximation algorithm for (u, p)-maxmin in
the continuous version of the game in Section 6.2. Our
algorithm provides a (u/8, p/8)-maxmin strategy for any
instance of continuous Colonel Blotto, given that there
exists a (u, p)-maxmin for that instance.

6.1 An Exact Algorithm for (u, 1)-maxmin In
this section we provide a polynomial time algorithm to
find a (u, 1)-maxmin strategy for player A. The formal
statement of the theorem is as follows.

Theorem 6.1. For any given instance of continuous
Colonel Blotto and any given u, there exists a polyno-
mial time algorithm to either find a (u, 1)-maxmin strat-
egy or report that no (u, 1)-maxmin strategy exists.

The algorithm is a linear program. It is worth
mentioning that using this LP, one can search over u
to find the maximum payoff that can be guaranteed for
player A (i.e., her pure maxmin strategy).

Let W :=
∑k
i=1 wi denote the total weight of all

battlefields. We define a subset S = {b1, . . . , bk} of
the battlefields to be critical if the total weight of the
battlefields in it is more than W − u (i.e.,

∑
i∈S wi >

W − u). The following lemma is the main observation
behind the LP.

Lemma 6.1. A strategy SA is an (u, 1)-maxmin strategy
of player A if and only if for any critical subset S of
the battlefields, strategy SA puts more than M(the total
troops of player B) troops into the battlefields in S.

6To remain consistent to the rest of the paper, we use “troops”

to refer to the resources even for the continuous version of the
game.

Proof. Assume SA is a (u, 1)-maxmin strategy of player
A and assume for the sake of contradiction that there
exists a critical subset S of the battlefields in which SA

does not put more than M troops. Clearly, player B is
able to win any battlefield i ∈ S by putting the same
number of troops that SA puts in it. This means player
A is only able to win the battlefields that are not in S,
but since S is a critical subset of the battlefields, the
total weight of the battlefields that are not in S is less
than u — which contradicts the assumption that SA is
an (u, 1)-maxmin strategy.

For the other direction, consider a strategy SA that
puts more than M troops in any critical subset of the
battlefields, we prove SA is indeed an (u, 1)-maxmin
strategy. Again, for the sake of contradiction, assume
this is not the case and there exists a strategy SB of
player B that gets a payoff of more than W − u agains
SA. The contradiction is that the subset of battlefields
that player B wins is a critical subset in which player A
has put at most M troops. �

We are now ready to explain the LP. There are
K variables x1, . . . , xK where variable xi denotes the
number of troops that we put in the i-th battlefield.
Apart from the constraints that enforce these variables
correspond to a valid K-partitioning of N , for each
critical subset, there is a constraint that ensures the
total number of troops in this subset of battlefields is
more than M . Since there maybe exponentially many
critical subsets, we use the ellipsoid method to solve it.
The linear program is formally given as LP 1.

(LP 1)

xi ≥ 0 ∀i : 1 ≤ i ≤ K
x1 + x2 + . . .+ xK = N∑
j∈S

xj > M ∀ critical subset S

To apply the ellipsoid method, we need a separation
oracle that decides whether a given assignment x̂ =
〈x1, . . . , xK〉 is a valid solution of LP 1, and if not, finds
a violated constraint. The separation oracle first verifies
whether the first two constraints are violated or not,
and if not runs the following instance of knapsack. The
knapsack has capacityM , and for any battlefield i, there
is an item with volume xi and value wi. Clearly, the
solution of this knapsack problem is the best response of
player B to the strategy of player A that corresponds to
x̂. It suffices to check whether in this best response, the
battlefields that player B wins form a critical subset or
not. If they do not form a critical subset, by Lemma 6.1,
x̂ is a valid solution of LP 1, and if they form a critical
subset, the constraint that corresponds to this critical
subset is violated.
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6.2 An Approximation Algorithm for (u, p)-
maxmin In this section we present a polynomial time
algorithm to find a (u/8, p/8)-maxmin algorithm of
player A in any instance of continuous Colonel Blotto
given that there exists a (u, p)-maxmin strategy. In this
algorithm we partition the battlefields into two sets of
low-value and high-value battlefields. If both sets are
non-empty, player A either puts all her troops in high-
value battlefields with probability 1/4 or she puts all
the troops in low-value battlefields with probability 3/4.
The strategies that she plays in any of these cases are
different. Algorithm 5 contains the details of the al-
gorithm. We also prove that this algorithm gives a
(u/8, p/8)-maxmin strategy of player A in Theorem 6.2.

Algorithm 5 An algorithm to find a (u/8, p/8)-maxmin
strategy of player A in continuous Blotto

1: A = {a1, a2, . . . , a|A|} ← the set of battlefield with
weight at least u/8

2: B = {b1, b2, . . . , b|B|} ← the set of battlefield with
weight less than u/8

3: s← 0
4: δ ← {}
5: ∆← {}
6: for b in B do
7: if s ≥ u/2 then
8: Add δ to ∆.
9: δ ← {}

10: s← 0
11: Add b to set δ.
12: s← s+ weight of battlefield b

13: M ′ ← N(|A|(1− p/2) + 1)
14: coin← 0
15: With 3/4 probability set coin to 1.
16: if coin = 0 and |A| = 0 then
17: coin← 1
18: if coin = 1 and (|B| = 0 or M ′ > M) then
19: coin← 0
20: if coin = 0 then
21: Choose a battlefield a uniformly at random from

set A.
22: Put N troops in battlefield a.
23: else
24: Choose a set δ from ∆ uniformly at random.
25: for b in δ do
26: Put N/wb troops in battlefield b.

Theorem 6.2. Given that a (u, p)-maxmin strategy ex-
ists for player A in an instance of continuous Colonel
Blotto, Algorithm 5 provides a (u/8, p/8)-maxmin strat-
egy.

Proof. The proof is structurally similar to that
of Theorem 5.3. However, because of the inherent
differences of the continuous case and the discrete case,
we are able to get a much better guarantee on the
guaranteed utility for the continuous case.

To prove that Algorithm 5 achieves a (u/8, p/8)-
maxmin strategy, we would have to show that with
probability at least p/8, it gets a payoff of at least u/8
against any pure strategy of player B. To do so, we
consider two cases. The first case is that player B puts
fewer than M ′ troops in high-value battlefields. The
second case is that player B puts no more than M −M ′
troops in the low-value battlefields. The following two
paragraphs consider these two cases.

Case 1 (fewer than M ′ troops in the high-value
battlefields): Denote by Mh the number of troops that
player B puts in high-value battlefields. Note that
M ′ = N(|A|(1 − p/2) + 1) and in this case Mh < M ′,
which implies Mh < N(|A|(1 − p/2) + 1) and that
there at most |A|(1 − p/2) battlefields that player B
can put at least N troops. As such, when player A
chooses, uniformly at random, a high-value battlefield
with probability at least p/2, player B puts less than
N troops in that battlefield and player A wins it. This
means that player A wins at least a battlefield with
probability at least p/2. Moreover, the payoff of each of
these battlefields is at least u/8, therefore, the minimum
payoff of u/8 with probability at least p/8 = (2/4)(1/4)
is guaranteed. The latter 1/4 term comes from the fact
that player A puts her troops in high-value battlefields
with 1/4 probability (Line 15).

Case 2 (no more than M −M ′ troops in the low-
value battlefields): At first, we show that the sum of
the weights of low-value battlefields should be at least
u(M −M ′)/N . Otherwise, we give a strategy for player
B that prevents player A from obtaining a (u, p)-maxmin
strategy which is assumed to exist. Note that by Line 13
of Algorithm 5, M ′ = N(|A|(1−p/2)+1), which means
2(|A|−bM ′/Nc)/|A| < p. Also note that by Lemma 5.2,
player B can put M ′ troops in the high-value battlefields
to make sure that player A wins no high-value battlefield
with probability at least 1 − p. Therefore, there exists
a strategy of player A that achieves a payoff of at
least u from the low-value battlefields with non-zero
probability. However, in the case that

wb1 + wb2 + . . .+ wb|B| ≥ u(M −M ′)/N

does not hold, the describe a strategy of player B
that prevents player A from having a (u, p)-maxmin
strategy. Let W =

∑
wbi be the total sum of low-

value battlefields’ weights. Put (M −M ′)wbi/W troops
in every battlefield bi. Note that this requires no more
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than M −M ′ troops since∑
(M −M ′)wbi/W = (M −M ′)(

∑
wbi)/W

= (M −M ′)W/W
= M −M ′.

In addition to this, note that in order for player
A to win a battlefield bi, she has to put more than
(M −M ′)wbi/W troops in that battlefield. Therefore,
the ratio of the payoff over the number of necessary troop
to win for each battlefield is at least W/(M −M ′) and
thus player A can obtain no more than WN/(M −M ′)
payoff. This implies that W ≥ u(M −M ′)/N since a
(u, p)-maxmin is guaranteed to exist for player A.

This lower bound on the total weights of low-value
battlefields implies that |∆| ≥ 8

5 (M −M ′)/N . To see
this, note that by Line 7, for any bundle of battlefields
δ ∈ ∆, the total weight of the battlefields in δ should
be less than 5

8u (= 1
2u + 1

8u). Also, |∆| is bounded as
follows:

|∆| ≥ u(M −M ′)/N
u5/8

≥ 8

5
(M −M ′)/N.

By Algorithm 5, player A plays in the low-value
battlefields with probability at least 3/4. Choosing a
bundle δ ∈ ∆ uniformly at random, she distributes her
money over all the battlefields of the bundle propor-
tional to their weights. In this case, if player B puts
at most 3

4N troops in this bundle player A wins at
least 1

4 fraction of the overall weight of the battlefields
in bundle δ which is at least u/8. By the fact that
|∆| ≥ 8

5 (M −M ′)/N , and that player B is able to put

in at most (M−M ′)
3N/4 bundles at least 3

4N troops, there

are at least

8(M −M ′)
5N

− 4(M −M ′)
3N

≤ 4(M −M ′)
15N

bundles that player B puts at most 3
4N troops in, which

is a 1
6 fraction of all the bundles. As a result, in this

case, with probability at least 1
8 = 1

6 ·
3
4 , player A gains u

8
payoff since by Line 15 of the algorithm she plays this
strategy on the low-value battlefields with probability
at least 3

4 . �

As a remark, our algorithms could be modified to
have no dependence on p which results in constructive
variants of Theorem 5.3 and Theorem 6.2. More pre-
cisely, one can obtain an algorithm that only takes u
in addition to an instance C of discrete (resp. con-
tinuous) Colonel Blotto in the input, and outputs a
(u/(16(dlogKe + 1)), p/4)-maxmin (resp. (u/8, p/8)-
maxmin) strategy where p is the maximum possible
probability for which a (u, p)-maxmin strategy exists for
instance C.

7 Auditing Game

In what follows we propose an approximation solution
for the auditor. We first begin by showing an upper-
bound on the highest protection that the auditor can
provide, and then proceed by proposing a strategy to
obtain a fraction of that.

Note that if the hacker chooses a set of states with
total value less than

∑
vi−u, the auditor is guaranteed

to receive a payoff of at least u. Hence we assume
throughout that any valid strategy of the hacker chooses
a set of states that have a total value of more than∑
vi − u.

We show an upper bound on the best that the
auditor can do via a linear program. In this linear
program, for every pure strategy x of the hacker, there
is a variable fx ≥ 0 which is a real value corresponding
to this strategy. Intuitively, the value of fx, after being
normalized, determines the probability that the hacker
plays strategy x. We refer to fx as the flow of strategy
x. Moreover, for every state vi, we have a constraint to
ensure that the total flow of the strategies of the hacker
that change the result of state vi is bounded by 1. The
objective of the program is to maximize the total flow
of all strategies.

maximize:
∑
x∈X

fx(7.5)

subject to:
∑
si3x

fx ≤ 1 ∀i ∈ [n]

Let opt be the optimal solution of LP 7.5. We
show that no strategy of the auditor can achieve a utility
of u with probability more than m/opt. Of course, if
opt ≤ m, this bound is meaningless. To this end, let f∗

be an optimal solution of LP 7.5 and consider a mixed
strategy of the hacker that plays every strategy x with
probability f∗x/opt (notice that the probabilities sum
up to 1 since opt =

∑
f∗x).

Recall that the total flow of the strategies that hack
every state is bounded by 1, and the hacker plays every
strategy with probability f∗x/opt, thus the probability
that any strategy of the hacker changes the outcome
of any state is bounded by 1/opt. Moreover, every
strategy of the auditor is to inspect at most m states,
thus she catches the hacker with a probability of at most
m/opt. Hence, no strategy of the auditor can protect
the election with a probability more than m/opt.

Lemma 7.1. There is no (u, p′)-maxmin strategy for the
auditor for p′ > m/opt, where opt is the optimal
solution of LP 7.5.

Now, in order to find an approximation solution for
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the auditor, we take the dual of LP 7.5 to obtain the
following linear program.

minimize:
∑
i∈[n]

gi(7.6)

subject to:
∑
si∈x

gi ≥ 1 ∀x ∈ X

By the strong duality theorem, the optimal solu-
tions of LP 7.6 and LP 7.5 are equal. Consider an op-
timal solution g∗ of LP 7.6. Based on this solution,
we construct a strategy for the auditor that protects
the election with probability at least (1 − 1/e)m/opt.
Notice that in LP 7.6, for every state si, we have a
variable gi and the total sum of the variables is equal
to opt. Moreover, for every strategy x of the hacker,
we have a constraint to ensure that the sum of the g∗i ’s
corresponding to x is at least 1. Consider a probability
distribution D over the states, such that for every state
si, Dsi = g∗i /opt. Trivially,

∑
Dsi = 1 holds. Now, we

define a strategy for the auditor and show its approxi-
mation factor is bounded by 1−1/e. In this strategy, we
draw m states from the probability distribution D and
investigate the results of those states. Notice that some
states might appear several times in our solution, but
we can ignore repetitions and consider each just once.

Now, let us analyze this strategy. Fix a pure
strategy x for the hacker. We know that the sum of
{g∗i } for the states corresponding to strategy x is at least
1. Therefore, every time we draw a state according to
the probability distribution D, one of the states of x is
audited with probability at least 1/opt. We draw m
different states, therefore, the probability that one of
the states of x appears in the strategy of the auditor is
at least

1− (1− 1/opt)m ≥(1− 1/e)m/opt.

If m ≥ opt, then

1− (1− 1/opt)m ≥1− (1− 1/opt)opt

≥(1− 1/e)

and hence the proof is trivial. Otherwise,

1− (1− 1/opt)m ≥(1− 1/e)m/opt

Thus, if the auditor follows this strategy, she can
protect the election with probability at least (1 −
1/e)m/opt. Notice that solving the linear programs
can be done in polynomial time via the ellipsoid method,
and thus we can find this strategy in polynomial time.
This result married with the upper-bound mentioned
earlier gives us the following theorem.

Theorem 7.1. Given a minimum utility u and an
instance of the auditing game, there exists a polynomial
time algorithm to find a (u, (1− 1/e)p)-maxmin strategy
for the auditor; where for any p′ > p, no (u, p′)-maxmin
strategy exists for the auditor.

7.1 Discussion and Practical Issues Our model
for the auditing game simplifies some real-world con-
straints. We discuss these constraints and their impli-
cations in this section.

First, our full-information assumption about the
outcome of the election is not completely the case in
reality. One workaround to get this information is
by polls. However, the accuracy of polls, whether
prospective or exit, is sometimes worse than the margin
of victory.

Second, we assume only one limit for the auditor
and that is the number of states that she can audit. The
current situation in real life is more complicated. First,
many states do not have technology that is auditable
or laws that would allow audits. Second, the cost of
auditing different states is not necessarily the same,
e.g., it might be proportional to the population of that
state (if the audit comprises a full hand count), or
approximately inversely proportional to the margin or
the square of the margin (if the audit is statistical).

Third, we assume if the auditor audits a hacked
state, she catches the hacker. In reality, it would be
more realistic to assume that the auditor will use a
method that relies on sampling ballots rather than on
a full recount, and that has some known minimum
probability of detecting that the results are wrong.

7.2 A Reduction From Generalized Blotto to
Auditing Game In a generalized version of Colonel
Blotto which we call Threshold Blotto game, we have
two players A and B, each with a given number of
troops. Both of the players distribute their troops
over k battlefields and the payoff of each battlefield
i is determined based on a specific function hi with
respected to the troops of each side in battlefield i. If
the total payoff of player A is more than a threshold
τ then player A wins the game, otherwise player B is
declared the winner.

More precisely, let x and y specify the number
of troops of the players. A set of k battlefields with
payoff functions {h1, h2, . . . , hk}, where each function
hi admits two inputs α and β corresponding to the
number of troops of the players in that battlefield and
determines the payoff to player A based on these values.
A threshold τ denoting the minimum payoff for A to win
the game. Colonel A wins if

∑
hi(αi, βi) ≥ u where α

and β are vectors of size k for players strategies. If A
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wins, she receives a payoff of 1, otherwise a payoff of -1.
Colonel B’s payoff is the negation of colonel A’s payoff
and thus the game is zero-sum.

In what follows, we show a reduction from Thresh-
old Blotto to the auditing game. Suppose we have
an Auditing game with n states s1, s2, . . . , sn and the
hacker needs to flip the results of some states with a
total number of electoral votes of at least t and the au-
ditor audits the results of at most m states. Based on
this, we construct an instance of the Threshold Blotto
game with k = n+1 battlefield. We associate colonel A
to the hacker and colonel B to the auditor. We set the
number of troops of colonel A equal to the total number
of electoral votes of all states (

∑
vi) and the number of

troops of Colonel B equal to m.
To make the reduction cleaner, we set the payoff

function of each battlefield i (hi) in such a way that the
optimal strategies meet the following conditions:

• For every battlefield 1 ≤ i ≤ n, player A either
puts 0 or vi troops (the number of electoral votes
of state si) in the i’th battlefield.

• For every battlefield 1 ≤ i ≤ n, player B either
allocated 0 or 1 troop to that battlefield.

• The total number of troops of player A in the first
n battlefields is at least t.

If all these conditions are met then, every time colonel
A puts vi troops in some battlefield 1 ≤ i ≤ n, we
can think of that as if the hacker hacks state si’s
results. Similarly, whenever colonel B puts a troop in
a battlefield 1 ≤ i ≤ n, we can interpret that as the
auditor issuing a recount for state si. Therefore, we can
define the payoff functions accordingly: For 1 ≤ i ≤ n
we set

hi(αi, βi) =


−∞, if βi /∈ {0, 1}
∞, if αi /∈ {0, vi}
0 if αi = 0 or βi = 0

1 if αi > 0 and βi > 0

where αi and βi denote the number of troops of colonels
A and B in battlefield i respectively. This payoff
function specifies the payoff of colonel B. The payoff of
colonel A is the nagation of that. This guarantees that
in an NE we always have αi = {0, vi} and βi = {0, 1}
for all 1 ≤ i ≤ n. Notice that colonel B gets a payoff
of 1 if she puts a troop in a battlefield and colonel A
also puts vi troops in that battlefield. To make sure
the total number of electoral votes of the hacker is at
least t, we set the following payoff function for the last

battlefield:

hk(αi, βi) =


−∞, if βi 6= 0

∞, if αi >
∑
vi − t

0 otherwise

Notice that if αi ≤
∑
vi − t, then the total number

of troops of colonel A in the first n battlefield is at
least t and thus the corresponding strategy of the hacker
is valid. Now, colonel B gets a non-zero payoff in
this game if and only if she puts some troops in a
battlefield which also contains some troops of colonel
A as well. Therefore, if we set τ = 1 an NE of this
game corresponds to an NE of the auditing game.

Theorem 7.2. Threshold Blotto game is computation-
ally harder than the auditing game.

8 Conclusion and Open Problems

In this paper, we went beyond strategies that maximize
the expected payoff and introduced the general notion
of (u, p)-maxmin strategies where receiving a payoff of u
with probability at least p is guaranteed. We then gave
approximation algorithms for the problem of finding
(u, p)-maxmin strategies for two games, Colonel Blotto,
and auditing games.

8.1 Open Problems Four main theoretical prob-
lems remain open.

(i). We proposed several approximation algorithms. Is
it possible to improve the approximation factors or
give exact solutions for any of them? In particular,
Theorem 6.1 gives an exact (u, 1)-maxmin solution
for continuous Colonel Blotto, however for the dis-
crete case, we only approximated (u, 1)-maxmin by
a factor of 2 (Theorem 5.1). How tight is this ap-
proximation factor? Is it possible to give a constant
approximation for discrete Colonel Blotto using a
better approximation of (u, 1)-maxmin strategies?

(ii). Our approximation algorithms for the Colonel
Blotto problem are bi-criteria, i.e., they approxi-
mate both u and p at the same time. Is there any
algorithm that approximates only the probability?
That is, is there any algorithm that for any given u,
outputs a (u, p)-maxmin strategy where p approx-
imates the highest possible probability of guaran-
teeing a payoff of u?

(iii). We gave evidence in Section 4.2 that it seems to be
computationally hard to give exact (u, p)-maxmin
strategies for Colonel Blotto instances based on the
hardness of best response. There are, however, rare
cases where computing the best response is actually
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harder than solving the actual game. Filling this
gap, by giving a direct hardness result is left open.

(iv). We consider a (u′, p′)-maxmin strategy to be a good
approximation of (u, p)-maxmin if u′/u and p′/p are
large (e.g., constant) fractions. One might be in-
terested in bounding the failure probability instead.
Consider for example a (u, 0.96)-maxmin strategy.
A constant bound of 1/8 (as in Theorem 7.1) on
p′/p achieves a (u′, 0.12)-maxmin strategy. The
failure probability in the original strategy is 0.04
(= 1− 0.96), whereas, the guaranteed failure prob-
ability in the given approximation is not less than
0.88 (= 1 − 0.12). Our approximation algorithms
do not guarantee any bound on the failure ratio
(0.04/0.88). Giving algorithms that bound this ra-
tio is left open.
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