
On the Robust Communication Complexity of Bipartite Matching

Sepehr Assadi∗

sepehr.assadi@rutgers.edu

Soheil Behnezhad†

soheil@cs.umd.edu

Abstract

We study the robust—à la Chakrabarti, Cormode, and McGregor [STOC’08]—communication
complexity of the maximum bipartite matching problem. The edges of an adversarially chosen
n-vertex bipartite graph G are partitioned randomly between Alice and Bob. Alice has to send
a single message to Bob, using which Bob has to output an approximate maximum matching
of G. We are particularly interested in understanding the best approximation ratio possible by
protocols that use a near-optimal message size of n · polylog (n).

The communication complexity of bipartite matching in this setting under an adversarial par-
titioning is well-understood. In their beautiful paper, Goel, Kapralov, and Khanna [SODA’12]
gave a 2/3-approximate protocol with O(n) communication and showed that this approximation
is tight unless we allow more than a near-linear communication. The complexity of the robust
version, i.e., with a random partitioning of the edges, however remains wide open. The best
known protocol, implied by a very recent random-order streaming algorithm of the authors
[ICALP’21], uses O(n log n) communication to obtain a (2/3 + ε0)-approximation for a constant
ε0 ∼ 10−14. The best known lower bound, on the other hand, leaves open the possibility of all
the way up to even a (1−ε)-approximation using near-linear communication for constant ε > 0.

In this work, we give a new protocol with a significantly better approximation. Particularly,
our protocol achieves a 0.716 expected approximation using O(n) communication. This protocol
is based on a new notion of distribution-dependent sparsifiers which give a natural way of
sparsifying graphs sampled from a known distribution. We then show how to lift the assumption
on knowing the graph’s distribution via minimax theorems. We believe this is a particularly
powerful method of designing communication protocols and might find further applications.

∗Department of Computer Science, Rutgers University. Research supported in part by the NSF CAREER award
CCF-2047061 and a gift from Google Research.

†Department of Computer Science, University of Maryland. Research supported by Google PhD Fellowship.

i

Contents

1 Introduction 1

1.1 Our Techniques . 1

1.2 Further Aspects of Our Results . 2

1.3 Further Related Work . 3

2 Preliminaries 4

3 Warm-up: A 0.656-Approximation Under Adversarial Partitions 4

3.1 The Protocol . 5

3.2 The Analysis: Proof of Proposition 3.2 . 6

4 A 0.7167-Approximation Under Random Partitions 8

4.1 The Protocol . 8

4.2 The Analysis of Protocol 2 . 9

4.3 Proof of Lemma 4.5: The Per-Vertex Contributions 11

4.4 Proof of Lemma 4.7: A Lower Bound for Per-Vertex Contributions 12

4.5 Proof of Lemma 4.8: Correctness of the Factor Revealing Program 1 13

4.6 A Simplification of Program 1 . 14

4.7 Lower Bounding the Simplified Program 2 . 16

5 Lifting Knowledge of Distribution via Minimax Theorems 18

5.1 Step 1: Getting an Instance-Wise Approximation Guarantee 19

5.2 Step 2: Using Yao’s Minimax . 22

ii

1 Introduction

Consider the following communication game. We have an n-vertex bipartite graph G = (L,R,E)
whose edges are partitioned into EA and EB given to Alice and Bob, respectively (both players
know L and R). The goal is to compute an approximate maximum matching of G by Alice sending
a single message to Bob and Bob outputting the solution. What is the tradeoff between the size
of Alice’s message and the approximation ratio of the output matching, or in other words, the
one-way communication complexity of bipartite matching?

It is known that Ω(n2) communication is necessary for finding a maximum matching [FKM+05]
and this is clearly sufficient by Alice sending her entire input. But the situation is more interesting
for approximate protocols. A 1/2-approximation with O(n) communication can be obtained by
Alice sending a maximum matching of her input to Bob and Ω(n) communication is clearly needed
for any constant factor approximation. More interestingly, Goel, Kapralov, and Khanna [GKK12]
showed that O(n) communication even suffices to obtain a 2/3-approximation and that this is the
“right” answer: any better approximation requires n1+Ω(1/log logn) � n · polylog(n) communication.

In this paper, we study a robust variant of this problem—à la Chakrabarti, Cormode, and
McGregor [CCM08]—wherein the graph G is still chosen adversarially, but now its edges are instead
randomly partitioned between the two players, i.e., each edge is independently given to one of the
players chosen uniformly at random. This model of random partitioning was introduced in [CCM08]
to go beyond the “doubly worst case” analysis of communication games, namely, adversarial inputs
and adversarial partitions, and sheds more light into the source of hardness: whether it is due to a
pathological partitioning of inputs or rather it holds for most input partitions.

Our main result is a substantial improvement over the 2/3-approximations for adversarial par-
titions [GKK12] under this random partition model.

Main Result (Formalized in Theorem 2). There is a randomized one-way protocol with O(n)
communication that achieves an expected 0.716-approximation for the bipartite matching prob-
lem under a random partitioning of the input edges between Alice and Bob.

Prior to our work, the best known approximation ratio achievable for this problem was (2/3+ε0)
for some ε0 ∼ 10−14, obtained via the very recent random-order streaming algorithm of the same
authors of this paper in [AB21].

We note that our protocol in this result can be considered non-explicit : we show the existence
of the protocol rather than explicitly designing the protocol itself (see Section 1.1 for details).
Alternatively, the protocol can be found also via a brute-force search in doubly exponential time.

1.1 Our Techniques

The 2/3-approximation protocol of [GKK12] (and follow-ups in [AB19] that simplified it or [LS17]
that extended it to the online batch-arrival model) are all based on finding a suitable subgraph of
Alice’s input that preserves large matchings approximately, namely, a matching sparsifier (similar-
in-spirit to cut sparsifiers [BK96, BK15]). These subgraphs are defined through a series of graph-
theoretic constraints: a novel decomposition into expanding sets (matching skeleton) in [GKK12,
LS17] (see also [KMT21]), and edge-degree bounded subgraphs in [AB19] (defined first in [BS15,
BS16] for dynamic graph algorithms). We take an entirely different approach in this paper.

The first step of our approach is a way of introducing distributional assumptions about the
input, while still solving the problem in its full generality. In particular, in this step, we reduce
the general problem to the case that the input graph G is sampled from some arbitrary but known

1

distribution G of graphs. We achieve this via combining several relatively standard ideas specific to
the matching problem with an application of Yao’s minimax principle [Yao77] (the so-called “hard
direction” of this principle; see Section 5). This is the main conceptual step of our approach.

The second step is to design a protocol for the problem assuming that it is additionally given
an input distribution G of the input graph. We achieve this through a new notion of “distribution-
dependent sparsifiers” described below. This is the main technical step of our approach.

Distribution-dependent sparsifiers. Distribution-dependent sparsifiers can be used whenever
we know a distribution G for inputs of Alice and Bob. In particular, the knowledge of G allows us
to determine the “importance” of each edge in Alice’s input EA: this is the probability that this
particular edge belongs to a fixed maximum matching (say, the lexicographically-first maximum
matching) of a graph sampled from G | EA, i.e., input graphs after conditioning on Alice’s input.
The main part of our argument is to show that these importances can be used to sparsify the Alice’s
graph to O(n) edges, while allowing Bob to find a large matching of the entire graph in expectation.

For our analysis of these sparsifiers, we need to show that the edges T communicated by Alice
and the edges EB given to Bob combined, include a large matching. We do so by constructing a
large fractional matching x on the edges in T ∪ EB. Our construction of x is online, in the sense
that we decide on the value of x induced on T before sampling Bob’s subgraph EB from G | EA.
Thanks to the fact that Alice picks the edges of T according to their importance, we can construct
x on T such that the fractional value around each vertex v is equal to the probability that v is
matched in the optimum solution via an edge given to Alice. This is particularly useful because
it implies that (i) the size of x induced on T equals the expected number of edges of Alice in an
optimum matching, and that (ii) if a vertex is unlikely to be matched via an edge of Alice in the
optimum solution, then the fractional matching x induced on T does not occupy this vertex by
much, leaving room for the rest of the edges in EB to use it.

As a warm-up in Section 3, we show how the ideas above lead to a very simple 0.656-approximate
protocol under an adversarial partitioning of the input. This is only slightly worse than the optimal
2/3-approximation for this problem, but more importantly, this warm-up conveys the key intuitions
behind distribution-dependent sparsifiers and how they are extremely useful for matching in the
communication setting. The protocol for our 0.716-approximation in Section 4 for the robust
communication model is very similar, but its analysis is more involved and in particular is based
on a careful examination of edge importance distributions under a random partitioning.

1.2 Further Aspects of Our Results

Random-order streams. The one-way communication model in general is strongly motivated
by applications to graph streaming algorithms [FKM+05]. The robust communication model, in
the same vain, is closely related to random-order streaming algorithms wherein the edges of the
graph arrive in a random order. In particular, lower bounds in the (robust) communication model
directly imply space lower bounds in the (random-order) streaming model [CCM08] and upper
bounds are sources of inspiration and stepping stones for designing streaming algorithms (see,
e.g., [GKK12, Kap13, ABB+19] for instances of communication protocols that were turned into
streaming algorithms in the context of the matching problem).

Maximum matchings have been studied extensively in random-order streams [KMM12,Kon18,
GKMS19, ABB+19, FHM+20, Ber20, AB21], leading to a 2/3-approximation algorithm of [Ber20]
that hit a natural barrier for this problem, and the recent algorithm of [AB21] that improved this
approximation to strictly more than 2/3 (for a tiny constant improvement). We hope our ideas in
this paper can lead to a significantly-better-than-2/3 approximation in random-order streams.

2

We remark that [AB21] proves the following robust communication lower bound (and thus a
random-order streaming lower bound also): any (1−Θ(1/logn))-approximation to maximum match-
ing in the robust communication model requires n1+Ω(1/log logn) � n · polylog(n) communication.
Closing the gap between our upper bound and the lower bound of [AB21] remains a fascinating open
question. Finally, we note that our improved protocol also has the following message: either one
should be able to achieve a significantly-better-than-2/3 approximation (say, a 0.716-approximation)
in random-order streams, or any lower bound technique for proving impossibility of such a result
should deviate from the standard two-party communication complexity lower bound approach.

Non-explicit protocols. As remarked earlier, the protocol in our main result can be considered
non-explicit. Alternatively, the players may need to first spend a doubly-exponential time to find
the protocol, and only then they can use it to solve the problem (this is due to the arguments in the
first step of our approach and in particular using Yao’s minimax principle). From an algorithmic
perspective, this is a weakness of our particular method of protocol design. On the other hand, we
find our method particularly strong and insightful from a communication complexity point of view
as we shall elaborate below.

Firstly, communication complexity is a non-uniform model of computation with players of un-
bounded computational power, and the only resource of interest is the communication cost of pro-
tocols. In this regard, our protocol uses the “full power” of this model to achieve its approximation
ratio using the optimal O(n) communication.

Secondly, and more importantly, there is a general gap in the study of communication complexity
of graph problems: almost all protocols designed in the literature are based on algorithmic tools that
are tailored to time-efficient protocols, while all known lower bounds are information-theoretic and
hold even for protocols with computationally unbounded players. Can this inconsistent treatment
be a contributing factor to the substantial gaps between known upper and lower bounds for various
problems, including the robust communication complexity of bipartite matching? If so, then our
approach in this paper allows us to explore a wider set of natural protocols for the problems at
hand and move toward achieving tight(er) bounds on communication complexity. This will in turn
suggest that purely information-theoretic complexity lower bounds cannot prove “strong enough”
lower bounds for computationally-efficient algorithms as well. We leave the question of proving
communication lower bounds for computationally-efficient protocols, which is the dual approach to
our work in this paper, as a very interesting research direction for future work.

1.3 Further Related Work

The communication complexity of bipartite matching has been extensively studied from various
angles including exact protocols [HMT88, IKL+12, DNO14], non-deterministic protocols [RS93],
protocols with limited rounds of communication [FKM+05,GKK12,GO13,AKL17,AB19], or multi-
party protocols [GO13, HRVZ15, AKLY16, Kap21, KMT21] to name a few (this is by no means a
comprehensive summary of previous results).

The one-way communication complexity of matching, in particular, is directly related to stream-
ing algorithms. In fact, a key motivation in the work of Goel, Kapralov, and Khanna [GKK12] was
to determine whether there is a better-than-1/2-approximation algorithm for the matching problem
in the streaming model that uses Õ(n) space, a longstanding open problem in this area. The lower
bound in [GKK12] implies that there is no semi-streaming algorithm with approximation ratio
better than 2/3; this lower bound was later improved by Kapralov to a 1 − 1/e ≈ 0.63 in [Kap13]
and to 1

1+ln 2 ≈ 0.59 in [Kap21]. Additionally, the communication protocols in [GKK12] were also
generalized in the same paper to achieve a (1− 1/e)-approximation in vertex-arrival streams.

3

Finally, we should point out that the work of [GKK12] on the one-way communication com-
plexity of bipartite matching has been quite instrumental and paved the path for various follow-
ups including optimal algorithms for vertex-arrival streaming model [GKK12, Kap13], state-of-
the-art lower bounds for streaming matching in both insertion-only streams [Kap13, Kap21] and
dynamic streams [AKLY16, DK20], online batch-arrival algorithms [LS17] and fault-tolerant algo-
rithms [AB19] for maximum matching, stochastic matching problem [AKL16,AB19,BDH20,BD20],
and using RS graphs for proving communication lower bounds for other problems such as matrix
rank [AKL17,BLWZ19], independent sets [CDK19,AKO20], and reachability [AR20].

2 Preliminaries

Notation. For any graph G, we use n to denote the number of vertices and µ(G) to denote the
maximum matching size. A fractional matching x on a graph G is an assignment of values xe to
the edges e of G such that xe ≥ 0 for all edges e and for each vertex v, xv :=

∑
e3v xe ≤ 1. We use

|x| as a shorthand for
∑

e xe which is the size of fractional matching x.

The following standard fact implies that to show a bipartite graph has an integral matching of
size µ, it suffices to construct a fractional matching of size µ on it.

Fact 2.1. Let x be a fractional matching of a bipartite graph G. Then G has an integral matching
of size at least |x|.

Communication model. We study the standard two-party communication model of Yao [Yao79]
and in particular in the one-way model (see the excellent textbook by Kushilevitz and Nisan [KN97]
for the standard definitions). The only slight derivation is that we focus on randomly partitioned
inputs, wherein the input graph is still chosen adversarially, but every edge in the graph is sent to
one of the players chosen independently and uniformly at random. To our knowledge, this model
was first introduced by Chakrabarti, Cormode, and McGregor in [CCM08].

Unless specified otherwise, we assume that protocols are randomized and both players have
access to the same shared source of randomness, referred to as public coins; however, one can always
use Newman’s theorem [New91] to turn public coins into private coins with a negligible overhead.
The communication cost of any protocol in this model is the worst-case length of the communicated
messages; to be consistent with prior work on this problem in [GKK12,Kap13,AB19,KMT21], we
measure the length of messages in Θ(log n)-bit words as opposed to the more standard convention
of bits. Finally, we note that the main resource of interest in this model is the communication and
in particular the players are assumed to be computationally unbounded.

3 Warm-up: A 0.656-Approximation Under Adversarial Partitions

In this section, we describe a one-way protocol for the bipartite matching problem and prove that it
achieves an approximation factor of (4

√
2−5) ≈ 0.656 under an adversarial partitioning of the edges.

While this protocol is slightly worse than the optimal 2/3-approximate protocols in [GKK12,AB19]
and its analysis shares some similarity with [BFHR19], we believe it is still instructive to start with
it, as it acts as a gentle introduction to the ideas used in our main protocol of Section 4.

A key technique introduced in this work is the notion of distribution-dependent sparsifiers.
For now, let us assume that there is a known distribution G from which the inputs EA and EB

of Alice and Bob are sampled. Now, suppose Alice has received EA as input and plans to send
a message to Bob. In order to do this, Alice considers the distribution of inputs conditioned on
her input, i.e., G | EA. The message sent by Alice is then a subgraph of her input (the sparsifier),
wherein each edge is included depending on the probability that this edge belongs to a fixed

4

maximum matching of a graph sampled from G | EA.

Finally, we can lift the assumption on the knowledge of G using minimax theorems: distribution-
dependent sparsifiers give us a deterministic protocol for each distribution of inputs with approx-
imation ratio at least α for every distribution; thus, there should also exist a single randomized
protocol that achieves the same α-approximation for all inputs. See Section 5 for this argument1.

3.1 The Protocol

We now describe our new distribution-dependent protocol. For the rest of this proof, we assume
that Alice and Bob are given the distribution of inputs G. For each edge e ∈ EA, we define:

ae := Pr
G∼G

[e ∈ MM(G) | EA], (1)

where function MM(·) deterministically returns a fixed maximum matching of its input (for instance,
the lexicographically-first one, or the one returned by the Hopcroft-Karp algorithm [HK73]). In
words, ae is the probability that e belongs to a fixed maximum matching of a graph G sampled
from G conditioned on the input EA given to Alice. We are going to treat ae as the “importance”
of edge e in EA. Observe that since Alice is aware of G, she can compute ae for each edge e ∈ EA.

Fractional matching interpretation. Consider the vector a := {ae}e∈EA . We claim that a is a
feasible fractional matching of EA: (i) for every edge e ∈ EA, we have ae ≥ 0 as ae is a probability,
and (ii) for all vertices v, av :=

∑
e3v ae ≤ 1 as it can be confirmed that:

av = Pr
G∼G

[v matched in MM(G) by edges of EA | EA]. (2)

This view of a presents a natural way of sparsifying Alice’s input. Basically, we can sparsify the
support of a via the standard cycle-canceling method (see Lemma 3.1 below) so that instead of
(possibly up to) Ω(n2) edges, it will only have O(n) edges while still preserving the fractional
matching of each vertex (but not necessarily the edges). This allows us to obtain another fractional
matching a′ that preserves key properties of a but is much sparser and thus Alice can simply send
this fractional matching directly to Bob.

Lemma 3.1 (Cycle-Canceling Lemma—Folklore). Let f be any fractional matching of EA. There
is another fractional matching f ′ on EA such that:

• Sparsification property: There are at most n− 1 edges e in EA with f ′e > 0.

• Preserving marginals and size: For every vertex v, f ′v = fv, which also implies |f ′| = |f |.

Proof. Iteratively take a cycle in the support of f , then alternately decrease and increase the value
of edges in a way that the minimum value edge gets value zero. Since all cycles are even-length, the
fractional matching around each vertices remains unchanged throughout the process. Once there
are no more cycles, the remaining fractional matching is a forest with at most n− 1 edges.

We can now formalize the protocol as follows.

1There is an important subtlety here: distribution-dependent sparsifiers approximate the matching in expectation
over the choice of graphs in the distribution; in other words, the output matching is close to the optimal matching
in expectation. To apply Yao’s minimax principle however, one needs an instance-wise approximation for the input
graph. Thus, the argument in this part is not a black-box application of minimax theorems.

5

Protocol 1. A simple distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA using Eq (1); as
discussed above, a is a valid fractional matching of EA.

(ii) Alice obtains fractional matching a′ by running cycle canceling on a (Lemma 3.1) and then
sends the edges T in the support of a′ to Bob.

(iii) Bob, given message T from Alice and input EB, returns a maximum matching of EB ∪ T .

By Lemma 3.1 this protocol requires O(n) communication (in fact, only n− 1 edges). Thus, it
only remains to analyze the approximation ratio of Protocol 1 in the following.

Proposition 3.2. For any input distribution G on adversarial partitions, Protocol 1 achieves a
4
√

2− 5 ≈ 0.6568 approximation in expectation with O(n) communication from Alice to Bob.

We prove this proposition in the next section.

3.2 The Analysis: Proof of Proposition 3.2

Recall that T is the support of the fractional matching a′ that Alice sends to Bob. For the analysis,
we only need to show that T ∪EB includes a large fractional matching (by Fact 2.1). To do so, we
construct a fractional matching x supported on T ∪ EB in the following way:

xe =

{
a′e if e ∈ T ,
1−max{a′u, a′v} if e = (u, v) ∈ MM(G) ∩ EB

. (3)

Intuitively, once the subgraph EA is given to Alice, we immediately commit her fractional matching
a′ to the final fractional matching x. Then, after the subgraph EB of Bob is revealed, on any edge
e = (u, v) ∈ MM(G) ∩ EB, we set xe = 1 − max{a′u, a′v} which is the largest possible fractional
value that does not violate its endpoints’ fractional matching constraints due to a′.

In what follows, for any choice of EA, we lower-bound the ratio E[|x| | EA] to E[µ(G) | EA]
which implies the approximation ratio of our protocol. We emphasize that x is only constructed
for the analysis and in the protocol, Bob simply returns a maximum matching of T ∪ EB.

Consider a maximum matching edge uv which belongs to the input of Bob, i.e. uv ∈ MM(G)∩EB
and suppose that a′v > a′u. Observe that in x, we set xuv = 1−max{a′u, a′v} = 1− a′v. In this case,
we say that vertex v is responsible for edge uv. Based on this, we define2:

bv := Pr[∃uv ∈ MM(G) ∩ EB such that a′v > a′u | EA], (4)

i.e., bv is the probability that v is responsible for some edge. We first bound the size of MM(G)
based on the values av and bv.

Claim 3.3. E[µ(G) | EA] =
∑

v
1
2av + bv.

Proof. We claim that,

(i) E[|MM(G) ∩ EA| | EA] = 1
2

∑
v av: by the definition of av in Eq (2) and the fact that the

number of vertices matched in any matching is twice the size of the matching;

(ii) E[|MM(G) ∩ EB| | EA] =
∑

v bv: since each responsible vertex has an edge in MM(G) ∩ EB
and for each such edge, exactly one of its neighbors is responsible.

2In case of ties, we break ties arbitrarily so that only one vertex is responsible for an edge.

6

The claim now follows by adding up the two equations above.

We now also bound the size of x based on av and bv values.

Claim 3.4. For any vertex v, define gv := 1
2av + (1− av)bv. Then, E[|x| | EA] =

∑
v gv.

Proof. By definition, ∑
v

gv =
∑
v

(1
2av + (1− av)bv) = |a|+

∑
v

(1− av)bv.

The first term |a| in the sum corresponds to the part of fractional matching x constructed on the
edges T sent by Alice, using the fractional matching a′, where we have |a′| = |a| by Lemma 3.1.

It thus remains to prove that contribution of x on the remaining edges (i.e. those given to Bob
in MM(G) ∩ EB), has expected size

∑
v(1 − av)bv. This follows from the fact that each vertex v

is responsible for some edge uv ∈ MM(G) ∩ EB with probability bv by Eq (4), and that when this
happens, we set xuv = 1 − a′v = 1 − av (as a′v = av for all v by Lemma 3.1). Noting that exactly
one of the endpoints of each edge e ∈ MM(G) ∩ EB is responsible for it, we get that x on the set
of edges given to Bob has expected size exactly

∑
v(1− av)bv, completing the proof.

Claims 3.3 and 3.4 imply that the approximation factor of Protocol 1 is

E[|x| | EA]

E[µ(G) | EA]
=

∑
v gv∑

v
1
2av + bv

. (5)

To lower bound this ratio, we use Fact 3.5 below.3

Fact 3.5. For all a, b ≥ 0 satisfying a+ b ≤ 1, it holds that 0.5a+(1−a)b
0.5a+b ≥ 4

√
2− 5.

Now to use Fact 3.5 to lower bound the approximation factor, first recall that for each vertex
v, by the definition of av and bv in Eq (2) and (4), we have,

av + bv ≤ Pr[v is matched in MM(G) ∩ EA | EA] + Pr[v is matched in MM(G) ∩ EB | EA]

= Pr[v is matched in MM(G) | EA] ≤ 1.

Thus, we can apply Fact 3.5 and get that for each vertex v, gv
0.5av+bv

= 0.5av+(1−av)bv
0.5av+bv

≥ 4
√

2 − 5.
This implies that

E[|x| | EA]

E[µ(G) | EA]

(5)
=

∑
v gv∑

v
1
2av + bv

≥
∑

v(4
√

2− 5)(1
2av + bv)∑

v
1
2av + bv

= 4
√

2− 5,

which proves Proposition 3.2 that Protocol 1 achieves a (4
√

2− 5)-approximation.

Remark 3.6. There are distributions for which the inequality above is actually equality. That is,
we have E[|x| | EA] = (4

√
2−5)E[µ(G) | EA]. Therefore, this analysis based on the construction of

fractional matching x cannot show an approximation factor better than (4
√

2− 5) for this protocol.

That being said, by “scaling” the fractional matching a of Alice before sparsifying it, one can in
fact achieve a (2/3)-approximation which is optimal for adversarial partitions with O(n) communi-
cation [GKK12]. We use this scaling idea in our protocol in Section 4.

3Mathematica can verify Fact 3.5; see e.g., this page on WolframAlpha.

7

https://www.wolframalpha.com/input/?i=Minimize%5B%7B%280.5a+%2B+%281-a%29*b%29%2F%280.5a+%2B+b%29%2C+0+%3C%3D+a%2C+0+%3C%3D+b%2C++a%2Bb+%3C%3D+1%7D%2C+%7Ba%2C+b%7D%5D

4 A 0.7167-Approximation Under Random Partitions

In this section, we show that a properly “scaled” variant of our distribution-dependent sparsifier of
Section 3—formalized as Protocol 2—achieves a significantly better approximation factor of 0.7167
in expectation, under a random partitioning of the edges between Alice and Bob.

Theorem 1. There is a deterministic one-way protocol that given any arbitrary but known distri-
bution G of input graphs, and a graph G sampled from G partitioned randomly between Alice and
Bob, outputs a matching M(G) in G such that:

E |M(G)| ≥ 0.7167 ·E[µ(G)].

The protocol requires communicating at most n− 1 edges from Alice to Bob.

4.1 The Protocol

Recall from our Protocol 1 in Section 3 that Alice, given her subgraph EA, first defines a fractional
matching a on EA where for each edge e ∈ EA, ae = PrG∼G [e ∈ MM(G) | EA], and then applies
cycle canceling on a and sends the support of the resulting fractional matching a′ to Bob. Our
protocol in this section is very similar, except that instead of applying cycle-canceling on a, we
first “scale” a to obtain another fractional matching z and then send the support of cycle-canceled
version z′ of z to Bob. To be more precise about what we mean by scaling a, let us define:

h(x, y) := min

{
3

2
,

1

x
,

1

y

}
. (6)

Now for each edge e = (u, v) ∈ EA we define

ze := h(av, au) · ae. (7)

Noting that a is a fractional matching, we get that av ≤ 1, au ≤ 1, which implies h(au, av) ≥ 1
and thus ze ≥ ae. This means that indeed z = {ze}e∈EA is entry-wise larger than a. But can this
scaling violate fractional matching constraints, i.e., for some v, zv :=

∑
e3v ze > 1? As a simple

consequence of our definition of function h, it turns out that indeed z is still a fractional matching.

Observation 4.1. Let z be obtained as above, then z is a fractional matching of EA.

Proof. It is clear that z ≥ 0 since ze ≥ ae ≥ 0 for each edge e. To see why zv ≤ 1 for all v, observe
that for each edge e = (u, v), ze = h(au, av)ae ≤ 1

av
ae; hence zv ≤ 1

av

∑
e3v ae = av/av = 1.

Note that the proof of Observation 4.1 only uses h(x, y) ≤ min{ 1
x ,

1
y}. The reason that we

defined h to be min{3
2 ,

1
x ,

1
y} will be apparent later when we analyze the approximation ratio.

Our scaled protocol can thus be formalized as follows.

Protocol 2. A scaled distribution-dependent sparsifier protocol.

(i) Given edges EA as input to Alice, she computes the vector a = {ae}e∈EA using Eq (1).

(ii) Alice then constructs z = {ze}e∈EA using Eq (7); by Observation 4.1 z is a valid fractional
matching of EA.

(iii) Alice obtains a fractional matching z′ by running cycle canceling on z (Lemma 3.1) and
then sends the edges T in the support of z′ to Bob.

(iv) Bob, given message T from Alice and input EB, returns a maximum matching of T ∪ EB.

8

Since the support of z′ has n− 1 edges, Protocol 2 only requires communicating n− 1 edges. It
thus only remains to analyze its approximation ratio which we do in the next section.

4.2 The Analysis of Protocol 2

As in Section 3, to analyze the size of matching MM(T ∪EB) reported by Bob, we construct a large
fractional matching x on T ∪EB and then use the fact that the maximum matching of this graph
is at least as large as any fractional matching on it. Our construction of this fractional matching
x is also in fact the same as our construction in Section 3 with the difference that we first commit
the sparsified version z′ of the scaled fractional matching z to x. More formally, we have:

xe :=

{
z′e if e ∈ T ,
1−max{z′u, z′v} if e = (u, v) ∈ MM(G) ∩ EB

.

To analyze the size of x, we need a few definitions. Definition 4.3 below for bv is equivalent to
the definition of bv in Section 3, but instead of vector a, for each edge e ∈ MM(G)∩EB the vertex
with higher z is made responsible. To be more formal and to avoid ties (for pairs of vertices with
zu = zv) we first define an ordering over the vertices in Definition 4.2 below and then define bv.

Definition 4.2. Based on fractional matching z, we define a total ordering over the vertex set V
as follows. For any pair of vertices u and v with zu 6= zv, we say v � u if zv > zu. For pairs u, v
with zv = zu we break the tie arbitrarily; say v � u if the ID of v is larger than u.

Definition 4.3. For each vertex v we define bv := Pr[∃u : uv ∈ MM(G) ∩ EB and v � u | EA].

Based on this definition of bv and similar to Claim 3.3 of Section 3, we get that:

Claim 4.4. E[µ(G) | EA] =
∑

v
1
2av + bv.

Proof. Follows from the same argument in the proof of Claim 3.3.

The next step is where we start to substantially deviate from the analysis of Section 3. We first
give an informal explanation of why a different approach might be needed to analyze Protocol 2
(the reader may choose to skip this informal explanation and jump to the new analysis after). After
that, we formally describe our actual analysis which is based on a notion of “contribution sharing”.

Informal explanation: why a different analysis is needed. In Claim 3.4 of Section 3 we
showed E[|x| | EA] =

∑
v

1
2av + (1 − av)bv, implying intuitively that each vertex v contributes an

expected size of gv = 1
2av + (1 − av)bv to x. We then proved the claimed approximation ratio by

comparing this contribution gv of each vertex v with 1
2av + bv, which can be thought of as the

portion of the benchmark E[µ(G) | EA] =
∑

v
1
2av + bv charged to vertex v.

A straightforward generalization of this framework for analyzing Protocol 2 would be as follows:
It is not hard to see that E[|x| | EA] =

∑
v

1
2zv+(1−zv)bv (the proof follows from a similar argument

to Claim 3.4); thus it suffices to show that the contribution gv = 1
2zv + (1 − zv)bv of each vertex

is large compared to the portion 1
2av + bv of the optimum charged to this vertex. The problem

with this type of argument, however, is that it is hard to measure exactly how the scaling part of
Protocol 2 is useful. In particular, take a vertex v and suppose that for every neighbor u of v in
EA, it holds that au = 1. This way, for each edge e = (v, u) ∈ EA we would have h(av, au) = 1 and
thus ze = h(av, au)ae = ae. That is, the edges of vertex v are in fact not scaled at all. This would
mean that zv = av and thus gv = 1

2zv + (1 − zv)bv = 1
2av + (1 − av)bv, which is not any different

from the guarantee we would get for vertex v without any scaling.

9

The issue discussed above intuitively implies that in defining the contribution gv of each vertex,
not only we should take into account the values of zv and bv, but that in fact the values of au
for neighbors u of v are also important. Motivated by this, we define gv such that intuitively we
share the contribution of each vertex with its neighbors. That is, each vertex passes a portion of
its contribution to its neighbors, and as a result also receives a portion of the contribution of them.
This dynamic allows us to argue that scaling does indeed help our protocol.

The formal analysis via “contribution sharing”. Consider function `(x) defined as

`(x) := max

{
x− 2/3

6
, 0

}
. (8)

This function ` is the sharing function and the reason that is defined this way will be apparent
later in the analysis. For each vertex v, define

gv :=
1

2
zv + (1− zv)bv − `(av)av +

∑
u

`(au)auv. (9)

The following lemma, which we prove in Section 4.3, states that the expected size of fractional
matching x conditioned on EA, is equal to

∑
gv. Therefore, intuitively, we can think of gv as the

amount that vertex v contributes to the size of x in expectation.4

Lemma 4.5. E
[
|x| | EA

]
=
∑

v gv.

To show that x tends to be large, Lemma 4.5 above implies that it suffices to show gv is large.
The next definition and the lemma that follows it are used for this purpose.

Definition 4.6. Let a, b ∈ [0, 1]. We define:

f(a, b, x) := b+
((

1
2 − b

)
h(a, x) + `(x)− `(a)

)
· a and f(a, b) := min

x∈[0,1]
f(a, b, x),

Lemma 4.7. For any vertex v, it holds that gv ≥ f(av, bv).

We prove Lemma 4.7 in Section 4.4. This lower bound is particularly useful since f(av, bv) only
depends on the values of av and bv, whereas gv also depends on au of neighbors u of v. Having this,
if we in fact prove that f(av, bv) ≥ α(1

2av + bv) for all v, then we get that Protocol 2 achieves an
approximation ratio of at least α since

E[|x| | EA]

E[µ(G) | EA]

Claim 4.4 and Lemma 4.5
=

∑
v gv∑

v
1
2av + bv

Lemma 4.7
≥

∑
v f(av, bv)∑
v

1
2av + bv

≥
∑

v α(1
2av + bv)∑

v
1
2av + bv

≥ α.

Note that up to this point of the analysis, we have not used the fact that the edges are partitioned
randomly between Alice and Bob. Therefore, in light of the lower bound of [GKK12] which proves
achieving a better-than-(2/3)-approximation for requires n1+Ω(1/log logn) communication, we get that
Protocol 2 cannot achieve a better-than-(2/3)-approximation under an adversarial partitioning of
the input graph. As a result, there should be a choice of av, bv such that f(av, bv) ≤ 2

3(1
2av + bv).

Indeed one can confirm that for av = 1
2 and bv = 1

2 , f(1
2 ,

1
2) = f(1

2 ,
1
2 , 0) = 0.5 = 2

3(1
2av + bv).

4We note that in fact Lemma 4.5 holds for any possible definition of function `. That is, in the proof of Lemma 4.5,
we do not use the value of `(x) defined in Eq (8).

10

How random partitioning helps. Our main insight in bypassing the 2/3-barrier highlighted
above is that for an average vertex v, it cannot always occur that av = bv = 1

2 under a random
partitioning. Formally, for a vertex u chosen uniformly at random from the vertex set V , we have

Eu∼V [au] =
1

n

∑
v

E[av] =
2

n
E|a| = 2

n
E|MM(G) ∩ EA| (?)

=
2

n
· E[µ(G)]

2
=

1

n
E[µ(G)],

Eu∼V [bu] =
1

n

∑
v

E[bv]
Definition 4.3

=
1

n
E|MM(G) ∩ EB| (?)

=
1

n
· E[µ(G)]

2
=

1

2n
E[µ(G)],

where the equalities marked with (?) use the fact that each edge is given to Alice/Bob with prob-
ability 1/2. This implies that E[au] = 2E[bu] which formalizes our earlier claim that au = bu = 1

2
cannot always happen for an average vertex u.

To turn the intuition above into an actual analysis of the approximation factor for Protocol 2
under a random partitioning, we write a factor revealing program formalized as Program 1. In
Lemma 4.8, we prove that the solution to Program 1 is indeed a lower bound for the approximation
ratio of Protocol 2. The proof of Lemma 4.8 is given in Section 4.5 and is based on our intuition
above regarding the relation between E[au] and E[bu] for a vertex u chosen at random.

We note that for generality Program 1 is written with a parameter p which is 1/2 (more generally
p can be thought of as the probability that each edge is given to Alice).

Lemma 4.8. Let r be the optimum value of Program 1 below for p = 1
2 ; then E|x| ≥ r ·E[µ(G)].

Program 1. A factor revealing (non-linear) program for the performance of Protocol 2.

find a distribution S for (a, b) over [0, 1]× [0, 1]

minimizing ES [f(a, b)]/ES [1
2a+ b]

subject to ES [a] = 2p
1−pES [b]

PrS [a+ b ≤ 1] = 1

PrS [a, b ≥ 0] = 1

Finally, in order to find the solution of Program 1, we first simplify it by proving a number of
its properties in Section 4.6. Then in Section 4.7, we write a factor revealing linear program whose
solution we show lower bounds the solution of Program 1. By solving this linear program, we then
get that r ≥ 0.7167 which implies the same bound on the approximation ratio of Protocol 2.

4.3 Proof of Lemma 4.5: The Per-Vertex Contributions

Lemma (Lemma 4.5 restated). E
[
|x| | EA

]
=
∑

v gv.

We first show in Claim 4.9 that
∑

v gv = |z|+
∑

v(1− zv)bv. Then in Claim 4.10, we prove that
E[|x| | EA] = |z|+

∑
v(1−zv)bv. Combination of the two gives Lemma 4.5 that E[|x| | EA] =

∑
v gv.

Claim 4.9.
∑

v gv = |z|+
∑

v(1− zv)bv.

Proof. Replacing gv with its definition, we get

∑
v

gv =
∑
v

(
1

2
zv − `(av)av + (1− zv)bv +

∑
u

`(au)auv

)

11

=

(
1

2

∑
v

zv

)
−

(∑
v

`(av)av

)
+

(∑
v

(1− zv)bv

)
+

(∑
v

∑
u

`(au)auv

)
.

Furthermore, we have
∑

v

∑
u `(au)auv =

∑
u `(au)(

∑
v auv) =

∑
u `(au)au =

∑
v `(av)av. There-

fore, the second and the fourth terms of the sum above cancel out and we get∑
v

gv =
1

2

∑
v

zv +
∑
v

(1− zv)bv = |z|+
∑
v

(1− zv)bv,

which completes the proof.

The proof of Claim 4.10 below is similar to the proof of Claim 3.4 in Section 3; however for
completeness we provide the full proof.

Claim 4.10. E[|x| | EA] = |z|+
∑

v(1− zv)bv.

Proof. Observe from definition of x that there are two types of edges that contribute to x: Those
edges e in the support T of z′ on which we set xe = z′e, and those edges e = (u, v) ∈ MM(G) ∩ EB
on which we set xe = 1−max{z′u, z′v}. The contribution of edges of T to x is |z′| which is equal to
|z| by Lemma 3.1. It thus remains to prove that the edges in MM(G)∩EB contribute an expected
size of

∑
v(1− zv)bv to x.

This follows from the fact that each vertex v is responsible for some edge uv ∈ MM(G)∩EB with
probability bv by Definition 4.3 and that when this happens we set xuv = 1−z′v = 1−zv (the latter
equality follows from Lemma 3.1). Noting that exactly one endpoint of each edge e ∈ MM(G)∩EB
is responsible for it, we get that x on MM(G) ∩ EB has expected size

∑
v(1− zv)bv.

4.4 Proof of Lemma 4.7: A Lower Bound for Per-Vertex Contributions

Lemma (Lemma 4.7 restated). For any vertex v, it holds that gv ≥ f(av, bv).

Proof of Lemma 4.7. Let u1, . . . , uk be all neighbors of vertex v in EA and let us use ei to denote
edge vui. Based on definition of gv, the fact that zv =

∑
i∈[k] zei , and zei = h(av, aui)aei due to

Eq (7), we get

gv =
1

2
zv − `(av)av + (1− zv)bv +

∑
i∈[k]

`(aui)aei

= −`(av)av + bv + (1/2− bv)
∑
i∈[k]

zei +
∑
i∈[k]

`(aui)aei

= −`(av)av + bv + (1/2− bv)
∑
i∈[k]

h(av, aui)aei +
∑
i∈[k]

`(aui)aei

= −`(av)av + bv +
∑
i∈[k]

((1/2− bv)h(av, aui) + `(aui))aei

= bv +
∑
i∈[k]

((1/2− bv)h(av, aui) + `(aui)− `(av))aei . (10)

Now let a?u := arg minx∈[0,1] f(av, bv, x) where f(av, bv, x) = bv+
(

(1/2− bv)h(av, x)+`(x)−`(av)
)
av

as in Definition 4.6. Shaving off the terms that do not depend on x and noting that av ≥ 0, we get

a?u = arg min
x∈[0,1]

((1/2− bv)h(av, x) + `(x)). (11)

12

Therefore, replacing aui with a?u does not increase the RHS of Eq (10); hence

gv ≥ bv +
∑
i∈[k]

(
(1/2− bv)h(av, a

?
u) + `(a?u)− `(av)

)
aei

= bv +
(

(1/2− bv)h(av, a
?
u) + `(a?u)− `(av)

)∑
i∈[k]

aei

= bv +
(

(1/2− bv)h(av, a
?
u) + `(a?u)− `(av)

)
av

= f(av, bv, a
?
u) (By Definition 4.6.)

= f(av, bv) (Since a?u = arg minx∈[0,1] f(av, bv, x).)

The last inequality is the desired bound of the lemma, thus the proof is complete.

4.5 Proof of Lemma 4.8: Correctness of the Factor Revealing Program 1

Lemma (Lemma 4.8 restated). Let r be the optimum of Program 1 (p = 1
2); then E|x| ≥ r·E[µ(G)].

To prove Lemma 4.8, we give a distribution for (a, b) that: (1) satisfies the constraints of
Program 1; and prove that (2)

E|x|
E[µ(G)]

≥ E[f(a, b)]

E[1
2a+ b]

.

It is not hard to see (see the formal proof of Lemma 4.8 at the end of this section) that existence
of such distribution implies E|x| ≥ r ·E[µ(G)] thereby proving Lemma 4.8.

We show that the distribution of (au, bu) where u is a vertex chosen uniformly at random from
V satisfies both of the aforementioned conditions. We emphasize that this distribution is defined
with respect to both the randomization of choosing vertex u, and the randomization of EA.

Claim 4.11. Let u be chosen uniformly at random from V . If each edge is given to Alice with
probability p and to Bob otherwise (i.e. with probability 1− p), then E[au] = 2p

1−pE[bu], au + bu ≤ 1,
and au, bu ≥ 0. Hence the distribution of (au, bu) is a feasible point in Program 1.

Proof. We prove that the desired constraints are satisfied one by one.

Constraint au, bu ≥ 0. Clearly au ≥ 0 since au is a probability by Eq (2). Moreover, from
Definition 4.3, bu is a probability, hence bu ≥ 0.

Constraint au + bu ≤ 1. We prove this conditioned on any outcome of EA and any choice of u.
It can be confirmed respectively from the definition of a and Definition 4.3 that

au + bu ≤ Pr[u is matched in MM(G) ∩ EA | EA] + Pr[u is matched in MM(G) ∩ EB | EA]

= Pr[u is matched in MM(G) | EA] ≤ 1.

Constraint E[au] = 2p
1−pE[bu]. Note that E[au] = 1

n

∑
v E[av] and E[bu] = 1

n

∑
v E[bv] since u is

chosen u.a.r. from V . Moreover,∑
v

E[av] =
∑
v

Pr[v is matched in MM(G) via an edge in EA]

= 2E|MM(G) ∩ EA| = 2pE|MM(G)|.

13

On the other hand,∑
v

E[bv] =
∑
v

Pr[v is matched in MM(G) via an edge vw ∈ EB with v � w]

= E|MM(G) ∩ EB| = (1− p) ·E|MM(G)|.

Therefore, we have E[au]
E[bu] = (1/n)·2p·E|MM(G)|

(1/n)·(1−p)·E|MM(G)| = 2p
1−p .

Claim 4.12. Let u be chosen uniformly at random from V . Then E[|x|]
E[µ(G)] ≥

E[f(au,bu)]

E[1
2
au+bu]

.

Proof. Recall from Lemma 4.5 that E[|x| | EA] =
∑

v gv. Taking expectation over EA from both
sides, we get E|x| =

∑
v E[gv]. Since u is a vertex chosen at random, we have E[gu] = 1

n

∑
v E[gv]

and thus E|x| = n·E[gu]. Combined with gu ≥ f(au, bu) of Lemma 4.7, we get E|x| ≥ n·E[f(au, bu)].

On the other hand, we have E[µ(G) | EA] =
∑

v
1
2av + bv by Claim 4.4. Taking expectation

over EA from both sides, we get E[µ(G)] =
∑

v E[1
2av + bv]. Noting that u is a vertex chosen at

random, we have E[1
2au + bu] = 1

n

∑
v E[1

2av + bv]. Therefore, E[µ(G)] = n ·E[1
2au + bu].

Inequalities above imply E[|x|]
E[µ(G)] ≥

nE[f(au,bu)]

nE[1
2
au+bu]

= E[f(au,bu)]

E[1
2
au+bu]

as desired.

We now have all we need to complete the proof of Lemma 4.8.

Proof of Lemma 4.8. Let u be a vertex chosen uniformly at random from V . We proved in
Claim 4.12 that E[|x|]/E[µ(G)] ≥ E[f(au, bu)]/E[1

2au + bu]. Furthermore, Claim 4.11 shows that
the distribution of (au, bu) is a feasible point in Program 1, i.e. it satisfies the program’s constraints.
This means that r ≤ E[f(au, bu)]/E[1

2au + bu] where r is the solution of the program. Combination
of these two bounds, implies E|x| ≥ r ·E[µ(G)].

4.6 A Simplification of Program 1

In this section we simplify Program 1 while keeping its optimum solution unchanged. We start
with the following claim.

Claim 4.13. There is an optimal distribution S for Program 1 such that in each outcome of
(a, b) ∼ S, either a+ b = 1 or a+ b = 0.

Proof. Let distribution (a′, b′) ∼ S ′ be an optimal solution of Program 1. We construct another
feasible distribution (a, b) ∼ S based on S ′ that satisfies Pr[a + b 6∈ {0, 1}] = 0 and we show that
the objective function does not increase.

Construction of S. Let distribution (a, b) ∼ S be obtained by drawing (a′, b′) ∼ S ′ and letting

(a, b)←

{
(a′

a′+b′ ,
b′

a′+b′) with probability a′ + b′

(0, 0) otherwise (i.e. w.p. 1− a′ − b′).

Observe that the sum a+ b either equals a′

a′+b′ + b′

a′+b′ = 1 or 0. Hence Pr[a+ b 6∈ {0, 1}] = 0.

Feasibility. The definition of S is essentially based on a coupling with distribution S ′. In this
coupling, conditioned on any outcome (a′, b′) ∼ S ′, we have E[a | (a′, b′)] = a′ and E[b | (a′, b′)] = b′.
Hence E[a] = E[a′] and E[b] = E[b′]. Furthermore, a, b ≥ 0 and a+ b ≤ 1 by construction. Hence,
all the constraints of Program 1 are satisfied by S too.

14

Objective value. We show that E[f(a,b)]

E[1
2
a+b]

≤ E[f(a′,b′)]

E[1
2
a′+b′]

which would imply the constructed distri-

bution S is also a solution of Program 1. As discussed above, E[a] = E[a′] and E[b] = E[b′], hence
the denominators are the same. It thus suffices to prove E[f(a, b)] ≤ E[f(a′, b′)]. We show this
by again considering the natural coupling between S and S ′ and showing that for any outcome of
(a′, b′), it holds that E[f(a, b) | (a′, b′)] ≤ f(a′, b′). To prove this, observe first that

E[f(a, b) | (a′, b′)] = (1−a′−b′)f(0, 0)+(a′+b′)f

(
a′

a′ + b′
,

b′

a′ + b′

)
f(0,0)=0

= (a′+b′)f

(
a′

a′ + b′
,

b′

a′ + b′

)
.

Furthermore, by Definition 4.6, for any 0 ≤ x ≤ 1,

f

(
a′

a′ + b′
,

b′

a′ + b′
, x

)
=

b′

a′ + b′
+

((
1

2
− b′

a′ + b′

)
h

(
a′

a′ + b′
, x

)
+ `(x)− `

(
a′

a′ + b′

))
a′

a′ + b′

and thus

(a′ + b′)f

(
a′

a′ + b′
,

b′

a′ + b′
, x

)
= b′ +

((
1

2
− b′

a′ + b′

)
h

(
a′

a′ + b′
, x

)
+ `(x)− `

(
a′

a′ + b′

))
a′.

Observing that a′ + b′ ≤ 1, we get −`(a′

a′+b′) ≤ −`(a
′) since `(·) is non-decreasing; it can also be

confirmed that
(

1
2 −

b′

a′+b′

)
h
(

a′

a′+b′ , x
)
≤ (1

2 − b
′)h(a′, x).5 As a result,

(a′ + b′)f

(
a′

a′ + b′
,

b′

a′ + b′
, x

)
≤ b′ +

((
1

2
− b′

)
h(a′, x) + `(x)− `(a′)

)
a′ = f(a′, b′, x).

Since f(a, b) = minx∈[0,1] f(a, b, x), this implies (a′+b′)f
(

a′

a′+b′ ,
b′

a′+b′

)
≤ f(a′, b′) which as discussed

above gives E[f(a, b)] ≤ E[f(a′, b′)], completing the proof that S is an optimal solution.

The next claim, further refines Claim 4.13 by ensuring that a+ b = 1 with probability 1.

Claim 4.14. There is an optimal distribution S for Program 1 such that PrS [a+ b = 1] = 1.

Proof. From Claim 4.13, we know that there is an optimal distribution S ′ for Program 1, where
any outcome (a′, b′) ∼ S ′ satisfies either (a′, b′) = (0, 0) or a′+ b′ = 1. Now let S be distribution S ′
conditioned on (a′, b′) 6= (0, 0). In other words, S is obtained by removing outcome (a′, b′) = (0, 0)
from S ′, and scaling the probability of every other outcome by 1

PrS′ [(a′,b′)=(0,0)] .

For distribution (a, b) ∼ S we have a ≥ 0, b ≥ 0, and a + b = 1. Furthermore, E[a] =
E[a′]

Pr[(a′,b′)=(0,0)] and E[b] = E[b′]
Pr[(a′,b′)=(0,0)] , hence E[a]/E[b] = E[a′]/E[b′], implying feasibility of S.

On the other hand, observe also that since f(0, 0) = 0, we have E[f(a, b)] = E[f(a′,b′)]
Pr[(a′,b′)=(0,0)] . As

a result, E[f(a,b)]

E[1
2
a+b]

= E[f(a′,b′)]/Pr[(a′,b′)=(0,0)]

E[1
2
a′+b′]/Pr[(a′,b′)=(0,0)]

= E[f(a′,b′)]

E[1
2
a′+b′]

, hence the objective values for S and S ′ are

the same and S is a valid solution for Program 1 too.

5To see this, observe that 1
2
− b′

a′+b′ ≤
1
2
−b′ since a′+b′ ≤ 1. Also h(a′

a′+b′ , x) ≤ h(a′, x) since h(·, ·) is non-increasing

in its both arguments. This implies that whenever b′ ≤ 1
2

(so that 1
2
−b′ ≥ 0),

(
1
2
− b′

a′+b′

)
h
(

a′

a′+b′ , x
)
≤ (1

2
−b′)h(a′, x).

On the other hand, b′ > 1
2

implies a′ < 1
2

and a′

a′+b′ < 1
2
, thus h(a′, x) = h(a′

a′+b′) = min{ 3
2
, 1
x
}. Hence, using

1
2
− b′

a′+b′ ≤
1
2
− b′ we get that

(
1
2
− b′

a′+b′

)
h
(

a′

a′+b′ , x
)
≤ (1

2
− b′)h(a′, x) in this case too.

15

Claim 4.14 implies that adding constraint Pr[a + b = 1] = 1 to Program 1 does not change
its objective value. This constraint would imply E[a] + E[b] = 1, which combined with constraint
E[a] = 2p

1−pE[b] gives E[a] = 2p
1+p , E[b] = 1−p

1+p , and E[1
2a+ b] = 1

1+p . Therefore the optimal solution
of Program 1 is equal to the optimal solution of the following program:

Program 2. A simplified variant of Program 1.

find a distribution S for a over [0, 1]

minimizing (1 + p)ES [f(a, 1− a)]

subject to ES [a] = 2p
1+p

PrS [0 ≤ a ≤ 1] = 1

4.7 Lower Bounding the Simplified Program 2

Observe that we need to compute f(a, b) = minx∈[0,1] f(a, b, x) in order to solve Program 2. We
analyze this function in the next claim, which gives a simple O(1) time algorithm to compute its
exact value for any given a and b.

Claim 4.15. Let functions ` and h be as defined. For any 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, it holds that
f(a, b) = minx∈A f(a, b, x) where A :=

{
0, 1,

√
3(1− 2b)

}
∩ [0, 1].

Proof of Claim 4.15. Define x? := arg minx∈[0,1] f(a, b, x); if there are multiple choices of x min-
imizing f(a, b, x), we let x? be the smallest one. By shaving off the terms in f(a, b, x) = b +((

1
2 − b

)
h(a, x) + `(x)− `(a)

)
a that do not depend on x, and noting that a ≥ 0 we get

x? = arg min
x∈[0,1]

((
1
2 − b

)
h(a, x) + `(x)

)
.

We prove x? ∈
{

0, 1,
√

3(1− 2b)
}

. To do so, we analyze the following cases separately.

Case 1: h(a, x?) = min{3
2 ,

1
a ,

1
x? } 6= 1/x?. In this case h(a, x?) does not depend on x?, hence

the only term in f(a, b, x?) that depends on x? is `(x?) = max{x
?−2/3

3 , 0}, which is non-decreasing.
Hence, if x? satisfies h(a, x?) 6= 1/x?, then x? = 0.

Case 2: h(a, x?) = min{3
2 ,

1
a ,

1
x? } = 1/x?. The case assumption implies x? ≥ max{a, 2/3}; thus(

1

2
− b
)
h(a, x?) + `(x?) =

(
1

2
− b
)

1

x?
+ max

{
x? − 2/3

6
, 0

}
x?≥2/3

=

(
1

2
− b
)

1

x?
+
x? − 2/3

6
.

The derivative of this function is 0 for
√

3(1− 2b). This is a valid point for the range of x? in this

case, whenever
√

3(1− 2b) ∈ [max{a, 2/3}, 1] which holds for 1
3 ≤ b ≤ 1

2 −
max{a,2/3}2

6 . Note that if
b is not in this range, then there is no local extreme point for x? ∈ (max{a, 2/3}, 1), implying that
x? is one of the extremes of the interval [max{a, 2/3}, 1], i.e. either x? = max{a, 2/3} or x? = 1.

Combination of the cases above implies that

x? ∈
{

0, 1,
√

3(1− 2b),max{2/3, a}
}
.

Now observe that for x? = max{a, 2/3} we have h(a, x?) = h(a, 0), but `(x?) ≥ `(0). As such,
f(a, b, 0) ≤ f(a, b,max{a, b}) and thus x? 6= max{a, 2/3}. This leaves x? ∈

{
0, 1,

√
3(1− 2b)

}
.

16

The next problem toward solving Program 2 is that the distribution of a ∼ S is defined over the
infinite domain [0, 1]. To alleviate this, let us suppose that a takes only the values in the discretized
domain Dd := {0, 1

d , . . . ,
d−1
d , 1} where d is a parameter that adjusts the precision of our solution.

This way, the distribution of a would essentially be a collection of probabilities {qa}a∈Dd
and we

can model Program 2 with a linear program formalized as Program 3.

We note that in addition to discretizing the domain of a, Program 3 also slightly modifies some
of the constraints of Program 2 so that the solution of Program 3 for any sufficiently large d gives
a lower bound for the solution of Program 2 (see Claim 4.16 below). In the following, we use rd(p)
to denote the solution of Program 3 for parameters p and d and use r(p) to denote the solution of
Program 2 (or equivalently Program 1) for a given p.

Program 3. A discretized and linear variant of Program 1.

minimize (1 + p)(Ef − 10
d)

subject to
∑

a∈Dd
qa = 1

qa ≥ 0 for all a ∈ Dd

Ea =
∑

a∈Dd
a · qa

Ef =
∑

a∈Dd
f(a, 1− a) · qa

2p
1+p −

1
d ≤ Ea ≤

2p
1+p + 2

d

Variables: {qa}a∈Dd
, Ea, Ef .

Parameters: p, d.

For any x ∈ [0, 1] define dxed := min{y ∈ Dd : y ≥ x} and bxcd := max{y ∈ Dd : y ≤ x}.

Claim 4.16. For any p and any integer d ≥ 10, rd(bpcd) ≤ r(p).

Proof. Let S ′ be the optimum distribution for Program 2 achieving the objective value r(p). We
first construct a distribution S based on S ′. Let a ∼ S be obtained by first drawing a′ ∼ S ′ and
then letting a← ba′cd. Clearly, a takes only values in the discretized domain Dd. Let us set

qa′′ ← Pr
a∼S

[a = a′′] for any a′′ ∈ Dd, Ea ← E
a∼S

[a], Ef ← E
a∼S

[f(a, 1− a)].

Feasibility. We now show that the values set above form a feasible solution to Program 3 for
parameter bpcd, namely, that they satisfy all of its constraints. Constraints qa ≥ 0,

∑
a∈Dd

qa = 1,
Ea =

∑
a∈Dd

a ·qa, and Ef =
∑

a∈Dd
f(a, 1−a) ·qe trivially hold since S is a distribution over domain

Dd. On the other hand, we have Ea = Ea∼S [a] = Ea′∼S′ [ba′cd]. Given that Ea′∼S′ [a
′] = 2p

1+p due to

S ′ being a solution of Program 2, we get 2p
1+p −

1
d ≤ Ea ≤

2p
1+p . Moreover, inequality 0 ≤ bpcd ≤ p

gives 2bpcd
1+bpcd −

1
d ≤

2p
1+p −

1
d and inequality bpcd ≥ p− 1

d combined with 0 ≤ p ≤ 1 and d > 0 gives
2bpcd

1+bpcd + 2
d ≥

2(p−1/d)
1+p−1/d + 2

d ≥
2p

1+p . Replacing these upper and lower bounds into the earlier inequality

for Ea, we get 2bpcd
1+bpcd −

1
d ≤ Ea ≤

2bpcd
1+bpcd + 2

d . Thus all constraints of Program 3 are satisfied.

The objective value. Now we turn to analyze the objective value of this feasible point con-
structed based on S. We show that (1 + bpcd)(Ef − 10

d) ≤ (1 + p)Ea′∼S′ [f(a′, 1 − a′)] = r(p),
which combined with feasibility, implies rd(bpcd) ≤ r(p). Simplifying the inequality and noting

17

that Ef = Ea∼S [f(a, 1− a)] = Ea′∼S′ [f(bacd, 1− bacd)], it suffices to show

E
a′∼S′

[
f(ba′cd, 1− ba′cd)] ≤ E

a′∼S′
[f(a′, 1− a′)

]
+ 10

d .

We can in fact prove the stronger bound that for all a ∈ [0, 1], f(bacd, 1−bacd) ≤ f(a, 1−a)
]

+ 10
d .

Let x be such that f(a, 1− a) = f(a, 1− a, x); we have

f(bacd, 1− bacd, x) = (1− bacd) +
((

1
2 − (1− bacd)

)
h(bacd, x) + `(x)− `(bacd)

)
bacd

≤ (1− a) +
((

1
2 − (1− a)

)
h(a, x) + `(x)− `(a)

)
a+ 10

d (?)

= f(a, 1− a, x) + 10
d .

The second inequality marked with (?) can be confirmed to hold based on our definitions of functions
h and ` and for all d ≥ 10.

We showed that for any solution S ′ of Program 2 with objective value r(p), there is a feasible
solution to Program 3 satisfying (1 + bpcd)(Ef − 10

d) ≤ r(p) for all d ≥ 6. Hence, rd(bpc) ≤ r(p) for
all d ≥ 6, completing the proof.

Claim 4.16 above proves that to lower bound the solution r(p) of Program 2 (or equivalently
Program 1), it suffices to solve Program 3. By running this program for d = 105 and p = 0.5, we
get r(0.5) ≥ 0.7167. Replacing this back to Lemma 4.8, we get6 that

E|x| ≥ 0.7167 ·E[µ(G)].

This concludes the proof of Theorem 1.

5 Lifting Knowledge of Distribution via Minimax Theorems

As discussed before, our protocol of Section 4 achieves its claimed approximation guarantee as-
suming that the input graph G is drawn from some distribution G that is known to the algorithm
a priori. In the standard communication complexity model, however, we do not have access to
distribution G and the algorithm should work against every possible input graph. In this section,
we show how one can use minimax theorems to lift the assumption on knowledge of the distribu-
tion G in our protocols, without incurring any loss to the approximation guarantee. The following
theorem formalizes our main result in the Introduction.

Theorem 2. There is a randomized one-way protocol that given any arbitrary input graph G
partitioned randomly between Alice and Bob, outputs a matching M(G) in G such that:

E |M(G)| ≥ 0.716 · µ(G)

The protocol requires O(n) communication from Alice to Bob.

Consider a deterministic protocol A and let us use A(GA, GB) to denote the size of the matching
returned by the protocol A when Alice receives subgraph GA and Bob receives subgraph GB. Recall
that in our discussion of Section 4, we say protocol A obtains an α-approximation if

E
G∼G,(GA,GB)

[A(GA, GB)] ≥ α · E
G∼G

[µ(G)], (12)

6The implementation is available upon request.

18

where here and throughout this section, by subscript (GA, GB) we mean the random process of
partitioning the edges ofG intoGA andGB independently and uniformly at random. This guarantee
is inherently different from that of Theorem 2. In the following, we first show how one can remedy
this part and then give the argument for lifting the assumption on the knowledge of G.

5.1 Step 1: Getting an Instance-Wise Approximation Guarantee

In order to remove the assumption on the knowledge of the distribution G we first show that we
can slightly modify our protocols to get an instance-wise expected approximation guarantee:7

Lemma 5.1. Suppose that given any input distribution G on n-vertex graphs, there is an α-
approximate maximum matching protocol A (i.e., A satisfies Eq (12)) with communication cost
O(n). For any input distribution G and any parameter ε > 0, there is another deterministic proto-
col A′ with communication cost O(nε) such that

E
G∼G,(GA,GB)

[
A′(GA, GB)

µ(G)

]
≥ (1− ε− o(1)) · α.

We start by proving the following (folklore) claim:

Claim 5.2 (folklore). Suppose that a bipartite graph G is adversarially partitioned between Alice
and Bob. There is a protocol with O(n) communication that whenever µ(G) ≤

√
n, computes an

exact maximum matching of G. The protocol does not require the knowledge of the value of µ(G).

Proof. The protocol is as follows: Alice upon receiving her part of the graph GA, computes a
minimum vertex cover U of GA. She then picks a subgraph T of GA by including all the edges of
GA between the vertices in U , and up to

√
n additional arbitrary edges of each vertex of U in GA.

If |T | = O(n), Alice communicates T to Bob, and otherwise sends an empty message. Bob then
returns a maximum matching of his edges union the set of edges communicated by Alice.

The communication size is clearly always O(n). We prove that if µ(G) ≤
√
n, then this protocol

computes an exact maximum matching even under an adversarial partitioning of the edges. We
have

|T | =
(
|U |
2

)
+ |U |

√
n = O(µ(GA)2) + µ(GA)

√
n = O(n),

where the first inequality uses equality of the size of minimum vertex cover and maximum matching
in bipartite graphs and the last inequality uses µ(GA) ≤ µ(G) ≤

√
n. Thus, Alice does send T to

Bob in this case.

Now fix any maximum matching M of G and let MB = M ∩ GB and MA = M ∩ GA. Since
U is a minimum vertex cover of GA, every edge in MA has at least one endpoint in U . Let MA

2

be the subset of edges in MA with two endpoints in U and MA
1 be those with one endpoint. Note

that Bob has access to all edges in MB ∪MA
2 . Starting from this matching, Bob can iteratively

pick an edge in MA
1 and match the endpoint in U using one of the arbitrary

√
n edges that Alice

communicates to Bob. One of these edges is guaranteed to have both endpoints unmatched since
µ(G) ≤

√
n. This way, we constructed a matching using the edges communicated to Bob with size

exactly µ(G). So the protocol indeed computes a maximum matching assuming µ(G) ≤
√
n.

We now turn to prove Lemma 5.1.

7We note that a slightly weaker variant of Lemma 5.1 where the communication size can be O(n logn
ε

) instead of
O(n/ε) has a simpler proof. However, we decided to prove the stronger version to ensure that our final protocol has
the optimal communication size of O(n) instead of O(n logn).

19

Proof of Lemma 5.1. First, we observe that we can assume w.l.o.g. that the distribution G satisfies

Pr
G∼G

[µ(G) >
√
n] = 1, (13)

as for all outcomes with µ(G) ≤
√
n we can simply run the protocol of Claim 5.2 and obtain the

exact maximum matching with O(n) communication.

Now fix any graph G and let GA, the subgraph given to Alice, include each edge of G inde-
pendently with probability 0.5. Fixing any matching in G, half of its edges are given to Alice
in expectation. This means E[µ(GA)] ≥ E[µ(G)]/2 and thus by a Chernoff bound and assuming
µ(G) ≥

√
n, we get the following concentration bound:

Pr
GA

[
µ(GA) ≤ 0.25µ(G)

]
≤ exp

(
−0.52 · 0.5µ(G)

2

)
= exp

(
−µ(G)

16

)
� n−2. (14)

Based on this, we get that µ(GA) > 0.25µ(G) with probability 1− o(n−2). Hence, Alice by looking
only at her part of the graph GA can estimate the value of µ(G) by some constant factor.

We need a few definitions. Let S be the unique integer where (1+ε)S−1 ≤ µ(GA) < (1+ε)S (and
note that S is a random variable of G and the partitioning GA). Define the set D := {S, . . . , S+k}
for k = dlog1+ε 4e+ 1. Also let I(G) = i iff (1 + ε)i−1 ≤ µ(G) < (1 + ε)i. Finally, for any integer i,
we define distribution

Gi := (G | I(G) = i).

Having these definitions, we can formalize protocol A′ as follows: Alice upon receiving GA, for
every i ∈ D, runs the protocol Ai guaranteed to exist by the lemma which satisfies

E
G∼Gi,(GA,GB)

[Ai(GA, GB)] ≥ α E
G∼Gi

[µ(G)]. (15)

In words, for every i ∈ D, Alice “assumes” that the input graph G is drawn from distribution Gi
instead of G and runs the promised protocol of the lemma based on that. Alice then sends all
the |D| messages of each of these protocols as well as the set D to Bob. Bob then upon receiving
his part of the graph GB, continues each one of the protocols given the corresponding message by
Alice and constructs |D| matchings M1, . . . ,M|D|. At the end, Bob reports the largest of these |D|
matchings M? as the output.

Communication size: Alice runs |D| = O(1/ε) protocols with O(n) communication size each.
Hence, the total communication size of these protocols combined together is O(n/ε) as stated.

Instance-wise approximation guarantee: We have

E
G∼G,(GA,GB)

[
A′(G)

µ(G)

]
=
∞∑
i=1

Pr
G∼G

[I(G) = i] · E
G∼G,(GA,GB)

[
A′(GA, GB)

µ(G)
| I(G) = i

]

=
∞∑
i=1

Pr
G∼G

[I(G) = i] · E
G∼Gi,(GA,GB)

[
A′(GA, GB)

µ(G)

]

≥
∞∑
i=1

Pr
G∼G

[I(G) = i] ·
EG∼Gi,(GA,GB)

[
A′(GA, GB)

]
(1 + ε)EG∼Gi [µ(G)]

, (16)

where the last inequality holds because µ(G) is the same for all G ∼ Gi up to (1 + ε) factor by
definition of distribution Gi. Next, observe that we have

E
G∼Gi,(GA,GB)

[A′(GA, GB)] ≥ Pr
G∼Gi,(GA,GB)

[I(G) ∈ D] · E
G∼Gi,(GA,GB)

[A′(GA, GB) | I(G) ∈ D]

20

≥ Pr
G∼Gi,(GA,GB)

[I(G) ∈ D] · E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) ∈ D] (17)

where the second inequality follows from the fact that if I(G) = i ∈ D, then Alice runs protocol
Ai and so in this case A′(GA, GB) ≥ Ai(GA, GB). We emphasize that the event I(G) ∈ D depends
on the outcome of set D which itself depends on partitioning (GA, GB). Hence, once we condition
on I(G) ∈ D, the partitioning (GA, GB) of G is no longer as before with each edge given either to
Alice or Bob independently and uniformly at random. What we show, however, is that the event
I(G) ∈ D happens with high probability. Using this, we can argue that conditioning on this high
probability event does not change the distribution of (GA, GB) by much.

Formally, observe that since µ(G) ≥ µ(GA), we have I(G) ≥ S. As such, either I(G) ∈ D or
I(G) > S + k. The latter implies by definition of I(G) that:

µ(G) ≥ (1 + ε)S+k−1 ≥ µ(GA) · (1 + ε)k−1 ≥ µ(GA)(1 + ε)log1+ε 4 = 4µ(GA).

As implied by Eq (14), the probability of this event is less than 1/n2. As such, we get:

Pr[I(G) ∈ D] ≥ 1− 1/n2. (18)

Therefore, we have:

E
G∼Gi,(GA,GB)

[Ai(GA, GB)] = Pr[I(G) ∈ D] · E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) ∈ D]

+ Pr[I(G) 6∈ D] · E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) 6∈ D]

≤ Pr[I(G) ∈ D] · E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) ∈ D] +
1

n2
· n

(By Eq (18) and noting that size of matching is always ≤ n.)

≤ E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) ∈ D] + o(1).

Re-arranging the terms, we thus have:

E
G∼Gi,(GA,GB)

[Ai(GA, GB) | I(G) ∈ D] ≥ E
G∼Gi,(GA,GB)

[Ai(GA, GB)]−o(1)
Eq (15)

≥ α E
G∼Gi

[µ(G)]−o(1).

Replacing inequality above and Eq (18) into Eq (17) gives:

E
G∼Gi,(GA,GB)

[A′(GA, GB)] ≥ (1− o(1))

(
α E
G∼Gi

[µ(G)]− o(1)

)
= (1− o(1))α E

G∼Gi
[µ(G)].

Replacing this bound back to Eq (16) we get

E
G∼G,(GA,GB)

[
A′(G)

µ(G)

]
≥
∞∑
i=1

Pr
G∼G

[I(G) = i] · (1− o(1))αEG∼Gi [µ(G)]

(1 + ε)EG∼Gi [µ(G)]

≥ (1− ε)(1− o(1))α

∞∑
i=1

Pr
G∼G

[I(G) = i]

= (1− ε)(1− o(1))α

≥ (1− ε− o(1)) · α.

This completes the proof.

21

5.2 Step 2: Using Yao’s Minimax

Now that we have an instance-wise approximation guarantee using Lemma 5.1, we show how
one can use Yao’s minimax principle [Yao77] to give a single randomized protocol that works
against all possible input graphs without knowledge of the distribution G from which the graph is
drawn. The discussion of this section is essentially a straightforward extension of Yao’s minimax
principle [Yao77] (see, e.g., [MR95, Section 2.2] or [KN97]) for the random partition model. The
proof of this proposition is almost identical to that of the original Yao’s minimax principle and we
claim no novelty for this proof.

Proposition 5.3. Let C and α be two parameters. Suppose for every distribution G on n-vertex
graphs, there exists a deterministic protocol AG with communication cost C with an instance-wise
approximation guarantee

E
G∼G,(GA,GB)∼G

[
AG(GA, GB)

µ(G)

]
≥ α

where here (GA, GB) is a random partitioning of G. Then, there exists a randomized protocol A?
with communication cost C such that for every graph G,

E
A?,(GA,GB)∼G

[A?(GA, GB)] ≥ αµ(G),

where the expectation here is taken over both the randomness of the protocol and the random par-
titioning of the edge-set of G between the players.

Proof. Consider a game between two players called the Input player and the Algorithm player8. The
set of strategies of the Input player are all bipartite graphs on n vertices, denoted by G(n), and the
set of strategies of the Algorithm player are all deterministic one-way protocols with communication
cost C, denoted by P(C); for fixed n and C, both sets are finite.

For any graph G ∈ G(n) as a strategy of the Input player and deterministic protocol A ∈ P(C)
as the strategy of the Algorithm player, we define:

val(G,A) := E
(GA,GB)∼G

[
A(GA, GB)

µ(G)

]
.

On a choice of (pure) strategies G and A by the players, we define the payoff of the Algorithm
player as val(G,A) and for the Input player as −val(G,A). Alternatively, the Algorithm player
would like to maximize val(G,A) (by choosing A), while the Input player tries to minimize it (by
choosing G). Thus, this is a zero-sum game.

Let ∆G denote the set of all distributions on strategies (graphs) of the Input player and ∆P

denote the set of all distributions on strategies (deterministic protocols) of the Algorithm player.
This way, ∆G and ∆P denote the set of all mixed strategies for the Input player and Algorithm
player, respectively. Considering this is a zero-sum game, Von Neumann’s Minimax Theorem
asserts that,

min
G∈∆(G)

max
A∈P(C)

E
G∼G

[val(G,A)] = max
AR∈∆P

min
G∈G(n)

E
A∼AR

[val(G,A)].

Replacing the value of val(G,A) with its definition on both sides, we have

min
G∈∆(G)

max
A∈P(C)

E
G∼G,(GA,GB)∼G

[
A(GA, GB)

µ(G)

]
= max
AR∈∆P

min
G∈G(n)

E
A∼AR,(GA,GB)∼G

[
A(GA, GB)

µ(G)

]
.

(19)

8This is a game-theoretic notation of a game and should not be confused with the communication game P .

22

The LHS in Eq (19) corresponds to picking any possible distribution on inputs and then running
the “best” deterministic protocol on this distribution and measuring the instance-wise expected
approximation ratio of the protocol. Thus, by the statement of the proposition, the LHS is ≥ α.

The RHS in Eq (19) corresponds to picking any distribution over deterministic protocols, i.e.,
a (public-coin) randomized protocol, and then running this protocol on the “worst” input graph
and measure the expected ratio of the protocol. By the lower bound on LHS and Eq (19), this is
at least α, which means that there exists a randomized protocol A? with communication cost C
(the arg max of RHS in Eq (19)) that achieves an α-approximation in expectation for every input
graph partitioned randomly between Alice and Bob. This concludes the proof.

Theorem 2 now follows immediately from Theorem 1, Lemma 5.1 and Proposition 5.3.

References

[AB19] Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for
matching problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA
2019, January 8-9, 2019 - San Diego, CA, USA, pages 11:1–11:20, 2019. 1, 3, 4

[AB21] Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming
matching. CoRR, abs/2102.07011. To appear in ICALP 2021, 2021. 1, 2, 3

[ABB+19] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and
Cliff Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive
graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1616–
1635, 2019. 2

[AKL16] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with
(very) few queries. In Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 43–60,
2016. 4

[AKL17] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in
graph streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 1723–1742, 2017. 3, 4

[AKLY16] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum match-
ings in dynamic graph streams and the simultaneous communication model. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364, 2016. 3, 4

[AKO20] Sepehr Assadi, Gillat Kol, and Rotem Oshman. Lower bounds for distributed sketching
of maximal matchings and maximal independent sets. In Yuval Emek and Christian
Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing,
Virtual Event, Italy, August 3-7, 2020, pages 79–88. ACM, 2020. 4

[AR20] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 342–353. IEEE, 2020. 4

23

[BD20] Soheil Behnezhad and Mahsa Derakhshan. Stochastic weighted matching: (1-ε) ap-
proximation. In 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1392–1403, 2020. 4

[BDH20] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic
matching with few queries: (1-ε) approximation. In Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, pages 1111–1124, 2020. 4

[Ber20] Aaron Bernstein. Improved bounds for matching in random-order streams. In 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), pages 12:1–12:13, 2020.
2

[BFHR19] Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.
Stochastic matching with few queries: New algorithms and tools. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 2855–2874, 2019. 4

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2)
time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 47–55, 1996. 1

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes for cuts
and flows in capacitated graphs. SIAM J. Comput., 44(2):290–319, 2015. 1

[BLWZ19] Maria-Florina Balcan, Yi Li, David P. Woodruff, and Hongyang Zhang. Testing matrix
rank, optimally. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 727–746, 2019. 4

[BS15] Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Au-
tomata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,
July 6-10, 2015, Proceedings, Part I, pages 167–179, 2015. 1

[BS16] Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approxi-
mation ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, January 10-12, 2016, pages 692–711, 2016. 1

[CCM08] Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds
for communication and stream computation. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, May 17-20, 2008, pages 641–650, 2008. 1, 2, 4

[CDK19] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-
arrival streams. In 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2019, July 9-12, 2019, Patras, Greece, pages 45:1–45:14, 2019. 4

[DK20] Jacques Dark and Christian Konrad. Optimal lower bounds for matching and vertex
cover in dynamic graph streams. In Shubhangi Saraf, editor, 35th Computational Com-
plexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Con-
ference), volume 169 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. 4

24

[DNO14] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interac-
tion. In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May
31 - June 03, 2014, pages 233–242, 2014. 3

[FHM+20] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.
Rossi. Approximate maximum matching in random streams. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,
UT, USA, January 5-8, 2020, pages 1773–1785, 2020. 2

[FKM+05] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-
3):207–216, 2005. 1, 2, 3

[GKK12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and
streaming complexity of maximum bipartite matching. In Proceedings of the Twenty-
third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–
485. SIAM, 2012. 1, 2, 3, 4, 7, 10

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted
matchings via unweighted augmentations. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 -
August 2, 2019, pages 491–500, 2019. 2

[GO13] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass
graph processing. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. 3

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973. 5

[HMT88] András Hajnal, Wolfgang Maass, and György Turán. On the communication complexity
of graph properties. In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 186–191, 1988. 3

[HRVZ15] Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication
complexity of approximate matching in distributed graphs. In 32nd International Sym-
posium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015,
Garching, Germany, pages 460–473, 2015. 3

[IKL+12] Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New
bounds on the classical and quantum communication complexity of some graph prop-
erties. In IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India,
pages 148–159, 2012. 3

[Kap13] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. 2, 3,
4

25

[Kap21] Michael Kapralov. Space lower bounds for approximating maximum matching in the
edge arrival model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021,
pages 1874–1893. SIAM, 2021. 3, 4

[KMM12] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques - 15th International Workshop, APPROX 2012,
and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-
17, 2012. Proceedings, pages 231–242, 2012. 2

[KMT21] Michael Kapralov, Gilbert Maystre, and Jakab Tardos. Communication efficient coresets
for maximum matching. In Hung Viet Le and Valerie King, editors, 4th Symposium on
Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages
156–164. SIAM, 2021. 1, 3, 4

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997. 4, 22

[Kon18] Christian Konrad. A simple augmentation method for matchings with applications to
streaming algorithms. In 43rd International Symposium on Mathematical Foundations
of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 74:1–
74:16, 2018. 2

[LS17] Euiwoong Lee and Sahil Singla. Maximum matching in the online batch-arrival model.
In Integer Programming and Combinatorial Optimization - 19th International Con-
ference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages
355–367, 2017. 1, 4

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995. 22

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991. 4

[RS93] Ran Raz and Boris Spieker. On the ”log rank”-conjecture in communication complexity.
In 34th Annual Symposium on Foundations of Computer Science, Palo Alto, California,
USA, 3-5 November 1993, pages 168–176, 1993. 3

[Yao77] Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of com-
plexity (extended abstract). In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 222–227,
1977. 2, 22

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In Proceedings of the 11h Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213, 1979. 4

26

	1 Introduction
	1.1 Our Techniques
	1.2 Further Aspects of Our Results
	1.3 Further Related Work

	2 Preliminaries
	3 Warm-up: A 0.656-Approximation Under Adversarial Partitions
	3.1 The Protocol
	3.2 The Analysis: Proof of prop:warm-up

	4 A 0.7167-Approximation Under Random Partitions
	4.1 The Protocol
	4.2 The Analysis of prot-scaled
	4.3 Proof of lem:x-lt-sum-gv: The Per-Vertex Contributions
	4.4 Proof of lem:gv-lowerbound: A Lower Bound for Per-Vertex Contributions
	4.5 Proof of lem:program: Correctness of the Factor Revealing prog:main
	4.6 A Simplification of prog:main
	4.7 Lower Bounding the Simplified prog:simplified

	5 Lifting Knowledge of Distribution via Minimax Theorems
	5.1 Step 1: Getting an Instance-Wise Approximation Guarantee
	5.2 Step 2: Using Yao's Minimax

