
ABSTRACT

Title of Dissertation: MODERN LARGE-SCALE ALGORITHMS FOR
CLASSICAL GRAPH PROBLEMS

Soheil Behnezhad
Doctor of Philosophy, 2021

Dissertation Directed by: Professor MohammadTaghi Hajiaghayi
Department of Computer Science
University of Maryland

Although computing power has advanced at an astonishing rate, it has been far out-

paced by the growing scale of data. This has led to an abundance of algorithmic problems

where the input tends to be, by orders of magnitude, larger than the memory available on a

single machine. The challenges of data processing at this scale are inherently different from

those of traditional algorithms. For instance, without having the whole input properly stored

in the memory of a single machine, it is unrealistic to assume that any arbitrary location of

the input can be accessed at the same cost; an assumption that is essential for traditional

algorithms. In this thesis, we focus on modern computational models that capture these

challenges more accurately, and devise new algorithms for several classical graph problems.

Specifically, we study models of computation that only allow the algorithm to use

sublinear resources (such as time, space, or communication). Examples include (i) massively

parallel computation (à la MapReduce) algorithms where the workload is distributed among

several machines each with sublinear space/communication, (ii) sublinear-time algorithms

that take time sublinear in the input size, (iii) streaming algorithms that take only few

passes over the input having access to a sublinear space, and (iv) dynamic algorithms that

maintain a property of a dynamically changing input using a sublinear time per update.

We propose new algorithms for classical graph problems such as maximum/maximal

matching, maximal independent set, minimum vertex cover, and graph connectivity in these

models that substantially improve upon the state-of-the-art and are in many cases optimal.

Many of our algorithms build on model-independent tools and ideas that are of independent

interest and lead to improved bounds in more than one of the aforementioned settings.

Modern Large-Scale Algorithms for

Classical Graph Problems

by

Soheil Behnezhad

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:

Professor MohammadTaghi Hajiaghayi, Chair/Advisor
Professor Alexander Barg
Professor Avrim Blum
Professor Sanjeev Khanna
Professor David Mount
Professor Aravind Srinivasan
Professor Madhu Sudan

© Copyright by

Soheil Behnezhad

2021

To Faranak and Shahab, my parents.

ii

Content

This thesis is based on the author’s work during his PhD period [26, 12, 47, 27, 48, 46,

36, 39, 40, 41, 45, 37, 38, 44, 43, 28, 33, 32, 24, 29, 23, 31, 30] on the theoretical foundations

of large-scale graph algorithms, and mainly covers the results in [26, 12, 48, 40, 41, 45, 37].

As we will see, various computational models can be suitable for large-scale graph prob-

lems, depending on the resources available and the specifics of the task at hand. The content

of this thesis is carried out in four main parts, each corresponding to one such computational

model. In Part I we cover graph algorithms in the Massively Parallel Computations (MPC)

model which is a common abstraction of MapReduce-style computation. Part II gives graph

algorithms that take sublinear time in the input size. Part III is on algorithms for dynamic

graphs. Finally, Part IV discusses streaming graph algorithms.

Part I-Chapter 4 is based on the following publications:

• “Exponentially Faster Massively Parallel Maximal Matching” by Behnezhad, Hajiaghayi,

and Harris [45]. In the proceedings of the 60th IEEE Annual Symposium on Foundations

of Computer Science (FOCS 2019).

• “Massively Parallel Computation of Matching and MIS in Sparse Graphs” by Behnezhad,

Brandt, Derakhshan, Fischer, Hajiaghayi, Karp, and Uitto [37]. In the proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing (PODC 2019).

Part I-Chapter 5 is based on the following publication:

• “Near-Optimal Massively Parallel Graph Connectivity” by Behnezhad, Dhulipala,

Esfandiari, Lacki, and Mirrokni [41]. In the proceedings of the 60th IEEE Annual

Symposium on Foundations of Computer Science (FOCS 2019).

Part II-Chapter 6 is based on the following very recent work:

• “Time-Optimal Sublinear Algorithms for Matching and Vertex Cover” by Behnezhad [26].

In the proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer

Science (FOCS 2021).

iii

Part III-Chapters 7 and 8 are based on the following publication:

• “Fully Dynamic Maximal Independent Set with Polylogarithmic Update Time” by

Behnezhad, Derakhshan, Hajiaghayi, Stein, and Sudan [40]. In the proceedings of

the 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2019).

Part III-Chapter 9 is based on the following publication:

• “Fully Dynamic Matching: Beating 2-Approximation in ∆ε Update Time” by Behnezhad,

Lacki, and Mirrokni [48]. In the proceedings of the 2020 ACM-SIAM Symposium on

Discrete Algorithms (SODA 2020).

Part IV-Chapter 10 is based on the following publication:

• “Beating Two-Thirds For Random-Order Streaming Matching” by Assadi and Behnezhad

[12]. In the proceedings of the 48th International Colloquium on Automata, Languages,

and Programming (ICALP 2021).

iv

Acknowledgments

First and foremost I’d like to thank my advisor MohammadTaghi Hajiaghayi. I am

grateful to Mohammad for helping me find my path in research, for encouraging me to expand

my collaborations, for giving me the freedom to explore what I was interested in, and for

supporting me well beyond just my academic life. This thesis would not have been possible

without Mohammad’s guidance and I will always be indebted to him.

I cannot stress how grateful I am to Avrim Blum and Vahab Mirrokni for their support

and mentorship. Avrim’s generosity and his caring personality, as well as his inspiring research

have had great impact on me. I am grateful to him for hosting me at TTIC and for all the

career advice he’s given me. I am also deeply thankful to Vahab for his faith in me, the

exciting internship I had in his group at Google Research, and his support over the years.

I am also immensely thankful to Sanjeev Khanna, Christos Papadimitriou, Cliff Stein,

and Madhu Sudan for their support, for being wonderful sources of advice, and for all I’ve

learned from them during our collaborations. I am also deeply thankful to Sepehr Assadi for

all the great advice he has given me at different stages of my PhD and research. I wish to

also thank Jakub Lacki and Nima Reyhani for hosting me at Google Research and Upwork.

Next, I would like to express my gratitude to the members of my thesis committee

Alexander Barg, Avrim Blum, MohammadTaghi Hajiaghayi, Sanjeev Khanna, David Mount,

Aravind Srinivasan, and Madhu Sudan for their time and their valuable comments. I am

additionally thankful to the amazing staff at UMD, especially Tom Hurst, Sharron McElroy,

Jodie Gray, and Regis Cornett who do a phenomenal job and have been extremely supportive

during my years at UMD. I also thank Google for my Google PhD Fellowship; majority of

the results presented in this thesis were obtained while I was funded by Google.

Research would not have been as fun if it had not been for the time I got to spend

with my brilliant collaborators. Thanks to Sepehr Assadi, MohammadHossein Bateni, Avrim

Blum, Sebastian Brandt, Moses Charikar, Sina Dehghani, Mahsa Derakhshan, Laxman Dhuli-

pala, Hossein Esfandiari, Alireza Farhadi, Manuela Fischer, Jon Froehlich, MohammadTaghi

Hajiaghayi, David Harris, Richard Karp, Sanjeev Khanna, Raimondas Kiveris, Marina Knit-

tel, Jakub Lacki, Silvio Lattanzi, Weiyun (Anna) Ma, Mohammad Mahdian, Vahab Mir-

v

rokni, Christos Papadimitriou, Nima Reyhani, Ronald Rivest, Hamed Saleh, Warren Schudy,

Masoud Seddighin, Saeed Seddighin, Aleksandrs Slivkins, Philip Stark, Cliff Stein, Madhu

Sudan, Elif Tan, Li-Yang Tan, Jara Uitto, and Hadi Yami.

My memories of my PhD are filled with the times I shared with my amazing friends at

UMD to whom I owe a big thank you: Ali, Alireza, Amin, Hadi, Hamed, Hossein, Kazem,

Kiana, Madeline, Mahyar, Majeed, Marina, Parsa, Saba, Saeed, Sina, and Soheil (sorry if I

am forgetting a name). I would also like to thank my long-time friend Mohammad Zabolian

who’s had a great impact on the person that I am today.

Above all, I am forever grateful to my parents Faranak and Shahab, and my little

brother Sepehr for their love and support. None of this would have been possible without

them and I am so sorry that I was so far away from home for the last five years.

Finally, I would like to thank the person with whom I have had the most collaborations,

both in research and otherwise, my lovely wife Mahsa Derakhshan. Thank you for all the

warmth and love that you’ve brought to my life, and your willing ear for whatever that I find

interesting. I am so incredibly lucky to have you, Mahsa!

vi

Table of Contents

Dedication ii

Content iii

Acknowledgements v

Table of Contents vii

Chapter 1: Introduction 1
1.1 Overview of the Computational Models . 2
1.2 Our Contributions . 4

Chapter 2: Preliminaries 10
2.1 Graph Notation and Basic Tools . 10
2.2 Non-graph Notation . 12
2.3 Probabilistic Tools . 12

Chapter 3: Randomized Greedy as a Common Tool 14
3.1 Definitions . 14
3.2 Local Simulation Oracles and Query-Complexity 16
3.3 Robustness Property . 18
3.4 Sparsification Property . 20

I Massively Parallel Computation 22

Chapter 4: Massively Parallel Maximal Matching 24
4.1 High Level Technical Overview . 27
4.2 The Degree Reduction Algorithm . 29
4.3 Matching Almost All High-Degree Vertices . 31

4.3.1 Analysis of the Inter-partition Degrees 33
4.4 Putting Everything Together . 40
4.5 Maximal Matching for Bounded Arboricity Graphs 42

Chapter 5: Massively Parallel Graph Connectivity 46
5.1 High-Level Overview of Techniques . 48

5.1.1 Our Connectivity Algorithm: The Roadmap 49
5.2 Main Algorithm: Connectivity with O(m) + Õ(n) Total Space 51

5.2.1 The Algorithm . 51
5.2.2 Analysis of Algorithm 1 – Correctness 54

vii

5.2.3 Analysis of Algorithm 1 – Round Complexity 55
5.2.4 Analysis of Algorithm 1 – Implementation Details & Space 64

5.3 Improving Total Space to O(m) . 69

II Sublinear-Time Algorithms 73

Chapter 6: Sublinear Algorithms for Matching & Vertex Cover 74
6.1 Applications of Theorem 3.2 . 75
6.2 Our Techniques & Background on the Query-Complexity of RGMM 79
6.3 Average Query-Complexity of RGMM . 80

6.3.1 Proof of Lemma 6.11 . 84
6.3.2 Proof of Lemma 6.12 . 87

6.4 The Final Algorithms for the Adjacency List Query Model 90
6.4.1 Proof of Theorem 6.1: Multiplicative Approximation 91
6.4.2 Proof of Theorem 6.2: Multiplicative-Additive Approximation 93

6.5 The Final Algorithm for the Adjacency Matrix Query Model 94

III Dynamic Algorithms 102

Chapter 7: Fully Dynamic Maximal Independent Set 103
7.1 Technical Overview . 105
7.2 Some Notation and Basic Tools . 107
7.3 Data Structures & The Algorithm . 108

7.3.1 Data Structures . 109
7.3.2 The Algorithm . 110
7.3.3 Overview of Correctness & The (Parametrized) Running Time 113

7.4 An Analysis of Affected Vertices: Proof of Theorem 7.10 114
7.4.1 Handling Likely Permutations: Proof of Lemma 7.15 118
7.4.2 The Mapping’s Structural Properties: Proof of Claim 7.18 122
7.4.3 Unlikely Permutations: Proof of Lemma 7.14 125

7.5 Fully Dynamic MIS: Putting Everything Together 126
7.5.1 The (Concrete, Non-Parametrized) Running Time 126
7.5.2 Deferred Proofs . 127

Chapter 8: Fully Dynamic Maximal Matching 135
8.1 Some Notation and Basic Tools . 137
8.2 The Formal Algorithm and its Analysis . 138

8.2.1 Data Structures . 138
8.2.2 The Algorithm . 138
8.2.3 Correctness & (Parametrized) Running Time 139
8.2.4 Putting Everything Together: Proof of Theorem 8.1 140
8.2.5 Deferred Proofs . 141

Chapter 9: Fully Dynamic Approximate Matching 147
9.1 Our Techniques . 148
9.2 A Static Algorithm . 150
9.3 Approximation Factor of Algorithm 13 . 151

viii

9.4 Dynamic Implementation of Algorithm 13 . 156
9.4.1 Tools . 156
9.4.2 Data Structures & Setup . 157
9.4.3 The Update Algorithm . 158
9.4.4 Correctness & Running Time of Update Algorithm 162

9.5 Greedy Matching Size under Vertex Sampling 164
9.6 Missing Proofs . 165

IV Streaming Algorithms 167

Chapter 10: Random-Order Streaming Matching 168
10.1 Overview of Techniques . 170
10.2 Background and Definitions . 171

10.2.1 Bernstein’s Algorithm . 172
10.3 Finding an Almost (2/3)-Approximation Early On 173

10.3.1 Bipartite Graphs . 173
10.3.2 General Graphs . 180

10.4 An Improved Algorithm via Augmentation 183
10.4.1 The Algorithm . 183
10.4.2 Proof of Lemma 10.20 . 190
10.4.3 Proof of Lemma 10.18 . 195

V Conclusion and Open Problems 197

Chapter 11: Conclusion and Open Problems 198
11.1 Open Problems for Massively Parallel Computation 198

11.1.1 Connectivity Problems . 198
11.1.2 Matching . 199

11.2 Open Problems for Dynamic Algorithms . 200
11.3 Open Problems for Streaming Algorithms . 201

Bibliography 202

ix

Chapter 1

Introduction

Although computing power has advanced at an astonishing rate, it has been far outpaced by

the growing scale of data. This has led to an abundance of algorithmic problems where the

input is massive in size. Data processing at this scale is accompanied by challenges that are

inherently different from those of traditional algorithms. For example, such massive inputs

are often, by orders of magnitude, larger than the memory available on a single machine.

Without having the whole input properly stored in the memory of a single machine, it is

unrealistic to assume that any arbitrary location of the input can be accessed at the same

cost; an assumption that is essential for most traditional algorithms. As a result, we have seen

a paradigm shift toward computational models that capture these challenges more accurately

by allowing only sublinear resources such as time, space, or communication. In this thesis,

we focus on these modern computational models and study classical graph problems in them.

Graphs are versatile mathematical objects for modeling pairwise relations among ob-

jects of various forms. For example, graphs can model connections in social networks, links

over the world wide web, the wiring of the human brain, or transportation infrastructure.

Due to their wide range of applications, graphs have been one of the most pervasive objects

in Computer Science. Classical graph problems such as maximum matching, maximum in-

dependent set, minimum vertex cover, or connectivity problems have been at the cornerstone

of algorithmic research, and some of the most sophisticated concepts of the field have been

developed in the study these problems.1 In this thesis, we revisit these classical problems for

graphs that are massive in size.

Massive graphs are ubiquitous. For example, the facebook graph has billions of vertices

(active monthly users) and trillions of edges (friendships) [70], both the human brain and the

web graph are estimated to have around 100’s of billions of vertices [19, 129], and the human

brain is estimated to have more than 100’s of trillions of edges [113].

1Most notably, the notion of polynomial-time solvability was first formalized by Jack Edmonds [82] in the

study of the maximum matching problem.

1

Depending on the resources available and the specifics of the task at hand, one may

choose various forms of large-scale algorithms. Examples include

• Massively Parallel Computation (MPC) algorithms,

• Sublinear-time algorithms,

• Streaming algorithms, and

• Dynamic algorithms.

We first give an overview of these models, and then discuss our contributions for each.

1.1 Overview of the Computational Models

Massively Parallel Computation (MPC): As discussed, one of the main challenges with

processing large-scale data is the fact that the input is by orders of magnitude larger than

the space available in a single machine. One of the most successful practical workarounds is

to distribute the workload among several machines running in parallel. This is often achieved

via frameworks such as MapReduce [80], Hadoop [152], Spark [155], and their variants. The

Massively Parallel Computations (MPC) model which was first introduced by Karloff, Suri,

and Vassilvitskii [109] and was further refined in the works of [98, 25, 8], captures the essence of

all of these frameworks and is the standard theoretical model for studying the computational

power of these systems.

In the MPC model, we have M machines each with space S. The input—which in this

thesis will always be a graph G—is arbitrarily distributed among the machines. Particularly,

each machine receives an arbitrary subset of the edges in the input graph. It would be

insightful to think of both S and M as parameters that are sublinear in the input size.

Computation then proceeds in synchronous rounds. In each round, each machine can perform

any computation on its local data, and can send messages to other machines which will be

delivered at the start of the next round. A machine can send different messages to different

machines in a round, with the only constraint being that the total messages sent and received

by each machine in each round should fit its memory. The main parameter to optimize is the

number of rounds, which often is the main bottleneck in practice [110].

Streaming Algorithms: The streaming model is another popular model of large-scale com-

putation. In this model, pieces of the input, e.g. the edges of a graph G, arrive one by one in

a stream. The algorithm does not have enough space to store the whole input, hence, has to

2

decide “on the fly” what information to keep in the memory in order to be able to compute

the desired property of the input at the end of the stream. Streaming algorithms can be used

in various ways. A common scenario in large-scale computation is to have an input that is

much larger than the main (random-access) memory, but fits an external memory. Now if

we have a space-efficient streaming algorithm, we can read the input line by line from the

external memory and process it in a streaming fashion. We refer interested readers to the

survey of Muthukrishnan [131] for more details about the streaming model.

Sublinear-time Algorithms: Linear-time algorithms have long been the gold standard in

algorithm design. For massive inputs, however, even such algorithms do not run efficiently.

Sublinear-time algorithms get around this challenge by simply spending time that is sublinear

in the input size. See the survey of Czumaj and Sohler [76] for some classic such algorithms.

Since sublinear-time algorithms can only read a small fraction of the input, it is im-

portant to specify how the input can be accessed. For graph problems—the focus of this

thesis—two models have been commonly considered in the literature:

• The adjacency list model: In this model, for any vertex v of its choice, the algorithm

may query the degree of v in the graph and, for any 1 ≤ i ≤ deg(v), may query the i-th

neighbor of v stored in an arbitrarily ordered list.

• The adjacency matrix model: In this model, the algorithm may query, for any vertex-

pair (u, v) of its choice, whether or not u and v are adjacent in the graph.

We consider both models in this thesis.

Dynamic Algorithms: In many large-scale applications, the underlying data changes dy-

namically over time. One can of course recompute any desired property from scratch after

each update using the best known static algorithm, but this is often prohibitive. Dynamic

algorithms help maintain such properties while taking a small time (often sublinear in the in-

put size) per update. Our focus in this thesis is particularly on fully dynamic graphs, namely

graphs that undergo both edge insertions and deletions. More precisely, we have a graph G

on a fixed vertex set V . Every update either inserts an edge to the graph or removes an edge

already in the graph. The goal is to maintain a property of the graph after every update

while spending a small time per update, which we refer to as the update-time.

3

1.2 Our Contributions

In this thesis, we study a number of fundamental graph problems in the models discussed

above and propose new algorithms that substantially improve upon the state-of-the-art and

are in some cases provably optimal. The main graph problems that we study include

• maximum (cardinality) matching (MCM),

• maximal matching (MM),

• maximal independent set (MIS),

• minimum vertex cover (MVC), and

• graph connectivity (GC).

Readers unfamiliar with these problems can find their formal definitions as well as the (mostly

standard) notation that we use throughout the thesis in Chapter 2.

Our main results in this thesis are summarized in Table 1.1. Here we give a brief

overview of these results and how they compare to prior works. We denote the number of

vertices of the graph by n, the number of its edges by m, and its maximum degree by ∆.

Chapter 4 – Massively Parallel Maximal Matching: In Chapter 4, we consider the

maximal matching (MM) problem in the MPC model. For many graph problems, including

maximal matching, O(log n) round MPC algorithms can be achieved in a straightforward way

by simulating traditional parallel (PRAM) algorithms [126, 104, 6]. But we often desire much

faster algorithms in the MPC model.

In Chapter 4 we present an O(log log ∆)-round MPC algorithm for maximal matching

using S = O(n) local space and total space M × S = O(m). This exponentially improves

all prior algorithms for maximal matching which either required logΩ(1)(n) rounds or n1+Ω(1)

space per machine. This result, published first in [45], culminated a long and exciting line

of work in the literature [78, 15, 94] that started with the breakthrough result of Czumaj,

Lacki, Madry, Mitrovic, Onak, and Sankowski [78]. We achieve this result by analyzing a

natural algorithm that partitions the vertex set of the graph and finds a greedy matching in

each partition. Our analysis of this algorithm unveils a novel application of sublinear-time

algorithms for proving concentration bounds that we find to be of independent interest. This

result also resolves several open problems raised by Czumaj et al. [78] who first conjectured

that a variant of this algorithm might work.

4

Model Problem Approx Time/Pass/Round Chapter

MPC with O(n) space
MM

Exact

O(log log ∆) rounds

4

MPC with O(nε) space

√
log λ · poly(log log n) rounds

MIS

GC O(logD + log log n) rounds 5

Sublinear Time

MCM
0.5− ε Õ(n) time (adjacency list)

6
(0.5, εn) Õ(n) time (adjacency matrix)

MVC
2 + ε Õ(n) time (adjacency list)

(2, εn) Õ(n) time (adjacency matrix)

Fully Dynamic

MIS
Exact poly(log n) update-time

7

MM 8

MCM 0.5 + Ωε(1) O(∆ε + poly log n) update-time 9

Semi-Streaming MCM 2/3 + Ω(1) 1 pass (random order) 10

Table 1.1: Table of the main results presented in this thesis. The considered problems are maximum
cardinality matching (MCM), maximal matching (MM), maximal independent set (MIS), graph con-
nectivity (GC), and minimum vertex cover (MVC). In these bounds n denotes the number of vertices,
∆ denotes the maximum degree, λ denotes the arboricity of the graph, and D denotes the diameter
of the graph — we refer readers to Chapter 2 for the formal definitions of these graph properties.
The parameter ε in the results can be any constant in (0, 1). All the algorithms for MM also give
2-approximations for MVC with essentially the same bounds.

While the space per machine of S = O(n) is suitable for dense graphs, it is not quite

useful when the input graph is sparse yet large-scale. For such graphs, it is unrealistic to even

assume that the vertex-set fits the memory of a single machine. We further show in Chapter 4

that one can improve the local space to S = O(nε) for any constant ε > 0 and still obtain a

poly(log log n) round algorithm for maximal matching (as well as maximal independent set)

so long as the input graph is uniformly sparse (i.e., has arboricity λ = poly(log n)).

Chapter 5 – Massively Parallel Graph Connectivity: Identifying the connected com-

ponents of a graph is another fundamental problem that has been studied in a variety of

settings (see e.g. [2, 88, 74, 146, 151, 142] and the references therein). This problem is also

of great practical importance [145] with a wide range of applications, e.g. in clustering [142].

Like many other graph problems, O(log n)-round MPC algorithms for graph connectivity have

been known for a long time. On the negative side, a widely believed 1v2-Cycle conjecture

(see Conjecture 5.1) [153, 143, 118, 18] implies that this is the best possible. The 1v2-Cycle

conjecture states that distinguishing whether the input is a cycle on n vertices or two cycles

on n/2 vertices each requires Ω(log n) rounds with n1−Ω(1) space per machine.

5

The 1v2-Cycle conjecture and the matching upper bound, however, are far from

explaining the true complexity of the problem. First, the hard example used in the conjecture

is very different from what most graphs look like. Second, the empirical performance of the

existing algorithms (in terms of the number of rounds) is much lower than what the upper

bound of O(log n) suggests [112, 118, 149, 142, 127]. This disconnect between theory and

practice has motivated the study of graph connectivity as a function of diameter D of the

graph. The reason is that the vast majority of real-world graphs, indeed have very low

diameter [121, 73]. This is reflected in multiple theoretical models designed to capture real-

world graphs, which yield graphs with polylogarithmic diameter [61, 99, 125, 62].

We prove in Chapter 5 that for any constant ε > 0, there is an MPC algorithm with

local space S = O(nε) and total space M × S = O(m) that given a graph with diameter D,

identifies its connected components in O(logD + log log n) rounds. Note that for the wide

range of values D = logΩ(1) n, the this algorithm takes O(logD) rounds which can be shown

to be optimal under Conjecture 5.1. Moreover, when D is not in this range the algorithm

takes only O(log log n) rounds. This algorithm improves two previous algorithms by Andoni,

Song, Stein, Wang, and Zhong [9] and Assadi, Sun, and Weinstein [18].

Chapter 6 – Sublinear Time Algorithms for Matching and Vertex Cover: In Chap-

ter 6 we focus particularly on algorithms that estimate the size of maximum matching or

minimum vertex cover. We give a near-tight analysis of the “average query-complexity” of

the famous random greedy maximal matching algorithm, improving upon a seminal work

of Yoshida, Yamamoto, and Ito [154]. This leads to a host of sublinear-time algorithms for

approximating the size of maximum matching and minimum vertex cover. Particularly, for

any ε > 0, we get that there is a randomized algorithm that reports a

(i) (1
2 − ε)-approximation to the size of MCM, and a (2 + ε)-approximation to the size of

MVC using O(n) + Õ(∆/ε2) = Õ(n/ε2) time in the adjacency list model.

(ii) (1
2 , εn)-approximation to the size of MCM and a (2, εn)-approximation to the size of

MVC using Õ(n/ε3) time in the adjacency matrix model.

Estimating the size of matching or vertex cover has been studied extensively in the

literature of sublinear time algorithms [139, 133, 154, 136, 107, 69]. Our results above resolve

major open problems of the area and turn out to be time-optimal up to logarithmic factors.

Part (i) of this result, notably, gives the first multiplicative estimator in the literature that

runs in Õ(n) time for all graphs. For a (2 + ε)-approximation, in particular, no o(n2) time

6

algorithm was known for general graphs prior to our work. Part (ii), on the other hand,

improves over the previous best running time of Õε(n
√
n) [69].

Chapter 7 – Dynamic Maximal Independent Set: The maximal independent set (MIS)

is another fundamental graph property with several theoretical and practical applications. In

Chapter 7 we study the maximal independent set (MIS) problem in fully-dynamic graphs. We

first overview the relevant work in the literature [64, 14, 101, 81, 137, 17] and then describe

our contribution.

In static graphs with m edges, a simple greedy algorithm can find an MIS in O(m) time.

As such, one can trivially maintain MIS by recomputing it from scratch after each update,

in O(m) time. In a pioneering work, Censor-Hillel, Haramaty, and Karnin [64] presented

an O(∆) update-time algorithm for this problem. Assadi, Onak, Schieber, and Solomon [14]

later gave an algorithm with O(m3/4) update-time; thereby improving the O(m) bound for all

graphs. This result was further improved in a series of subsequent papers [101, 81, 137, 17].

The fastest algorithm algorithm prior to our work was a randomized algorithm of [17], which

required Õ(min{
√
n,m1/3}) amortized update-time in n-vertex graphs.

In Chapter 7, we show that it is possible to maintain an MIS of fully-dynamic graphs

in polylogarithmic time. This exponentially improves over the prior algorithms, which all

had polynomial update-time on general graphs.

In Chapter 8, we show how a variant of this algorithm can also maintain a randomized

greedy maximal matching in polylogarithmic update-time. While algorithms with polylog-

arithmic update-time for maximal matching have been known previously [21, 147], none of

them maintained a randomized greedy one, which turns out to be an important feature. Par-

ticularly, as we soon describe, we use this result as a black-box in Chapter 9 to obtain an

improved approximation for dynamic MCM.

Chapter 9 – Fully Dynamic Approximate Matching: The problem of maintaining a

large matching in the dynamic setting has also received significant attention over the last two

decades (see [135, 22, 132, 102, 58, 55, 147, 57, 56, 65, 10, 53] and the references therein).

One of the major achievements in the literature of dynamic graph algorithms, has been

discovery of algorithms that maintain a maximal matching, and thus a 1
2 -approximation of

maximum matching, in polylogarithmic (or constant) update time [22, 147]. In a sharp

contrast, however, we have little understanding of the update-time-complexity once we go

7

slightly above 1
2 -approximation. A famous open question of the area, asked first2 in the

pioneering paper of Onak and Rubinfeld [135] from 2010 is whether there exists a (1
2 +Ω(1))-

approximate algorithm with polylogarithmic update-time. More than a decade later, we

are still far from achieving a polylogarithmic update-time algorithm. Prior to our work,

the fastest algorithm for maintaining a matching with a better-than-1
2 approximation factor

was presented by Bernstein and Stein [52] which handles updates in O(m1/4) time where m

denotes the number of edges in the graph.

In Chapter 9 we prove that for any ε ∈ (0, 1) and any n-vertex graph of maximum

degree ∆, one can maintain a 1
2 +Ωε(1) approximate maximum matching in O(∆ε)+polylog n

worst-case update time. As such, the update-time can be improved to any arbitrarily small

polynomial while obtaining a a strictly better-than-1
2 approximation. In this result, we use

the abovementioned algorithm of Chapter 8 on maintaining a randomized greedy maximal

matching as a black-box, and in a crucial way. See Chapter 9 for more details and, especially,

for comparisons with the prior work of [55].

Chapter 10 – Random-Order Streaming Matching: In Chapter 10 we turn our at-

tention to the streaming model and study the MCM problem in this model. Our focus, is

particularly on the semi-streaming model of computation [88] where the space available is

n ·poly(log n). The greedy algorithm for maximal matching gives a simple 1/2-approximation

algorithm to this problem in O(n) space. When the stream of edges is adversarially ordered,

this is simply the best result known for this problem, while it is also known that a better

than 1
1+ln 2 ∼ 0.59-approximation is not possible [106] (see also [105, 96]). Closing the gap

between these upper and lower bounds is a longstanding open problem.

Going beyond this “doubly worst case” scenario, namely, an adversarially-chosen graph

and an adversarially-ordered stream, there has been an extensive interest in recent years in

studying this problem on random order streams [116, 114, 90, 85, 15, 50]. Prior to our

work, the best known approximation was the (almost) 2/3-approximation of Bernstein [50].

This is a natural barrier for the problem [114, 50]. In particular, [50] posed obtaining a

(2/3 + Ω(1))-approximation to this problem as an important open question. We resolve this

question in Chapter 10 and present an algorithm that for an absolute constant ε0 > 0 obtains

a (2
3 + ε0)-approximate maximum matching using O(n log n) space.

The importance of this result is in that it proves that 2
3 -approximation is not the “right”

answer to this problem. This is in contrast to some other problems of similar flavor such as

2See also [54, Section 4], [52, Section 7] or [65, Section 1].

8

the one-way communication complexity of matching (on adversarial partitions) [96, 13] or

the fault-tolerant matching problem [13] which are both solved using similar techniques and

for both 2
3 -approximation is provably the best possible.

A Unified Approach for Designing Large-Scale Graph Algorithms: Many of our

algorithms build on model-independent tools and ideas that are of independent interest and

lead to improved bounds in more than one of the aforementioned settings. Particularly, one of

the conceptual contributions of this thesis, is to show that “randomized greedy algorithms” for

maximal independent set and maximal matching are extremely powerful tools for large-scale

graph processing. We elaborate more on randomized greedy algorithms and their properties

that we use in Chapter 3.

9

Chapter 2

Preliminaries

In this chapter, we overview some of the common notation and definitions that we use

throughout this thesis.

2.1 Graph Notation and Basic Tools

All of the algorithms considered in this thesis are graph algorithms. A graph G = (V,E) has

a vertex-set V and an edge-set E each element of which is a pair of vertices. All the graphs

considered in this thesis are simple, undirected, and unweighted. That is, all the edges are

unordered pairs between distinct vertices (i.e., no self-loops), and that a vertex-pair belongs

to E at most once (i.e., no parallel edges).

For a vertex v ∈ V , we use the neighbor-set NG(v) of v to denote the set of vertices

u that are connected to v (i.e., there is an edge {u, v} ∈ E). Moreover, we use ΓG(v) :=

NG(v) ∪ {v} and use degG(v) := |NG(v)| to denote the degree of v in G.

A path P of G is an ordered set of distinct vertices (v1, . . . , vk) such that {vi, vi+1} ∈ E

for all i ∈ {1, . . . , k− 1}. The length of a path (v1, . . . , vk) is the number of edges in it which

is k− 1. For any two vertices u and v, we use distG(u, v) to denote the length of the shortest

path connecting u and v; if no such path exists, then distG(u, v) =∞.

For any V ′ ⊆ V , we use G[V ′] to denote the induced subgraph of G on V ′; that is, G[V ′]

contains edge e in E if and only if both of its endpoints are in V ′. For two disjoint subsets

A,B ⊆ V , we use G[A×B] to denote a bipartite subgraph of G with one part being A, the

other part being B, and the edge-set including any edge of E with one endpoint in A and

the other endpoint in B. The line graph of a graph G = (V,E), is a graph L(G) = (VL, EL)

whose vertex-set VL equals the edge-set E of G, and there is an edge {e, e′} ∈ EL iff the edges

e and e′ of G share one endpoint.

10

In all the notation define above, we may drop the subscript G if the graph G is clear

from the context.

Throughout the thesis, we use G = (V,E) to denote the input graph. Unless otherwise

stated, we use the following notation to refer to the main properties of G:

• n: the number of vertices in G, i.e., n := |V |.

• m: the number of edges in G, i.e., m := |E|.

• ∆: the maximum degree in G, i.e., ∆ := maxv∈V deg(v).

• d̄: the average degree in G, i.e., d̄ :=
(∑

v∈V deg(v)
)
/n = 2m/n.

• µ(G): the size of the maximum matching of G.

• ν(G): the size of the minimum vertex cover of G.

• D: the diameter of G defined as maxu,v∈V :dist(u,v)6=∞ dist(u, v).

• λ: this is the arboricity of the graph defined as maxU⊆V dmU/(|U | − 1)e where mU

denotes the number of edges in the graph with both endpoints in U .

Graph problems. We mainly study the following graph problems in this thesis:

• Maximum/maximal matching: An edge subset M ⊆ E is a matching if no two

edges in M share an endpoint. A matching M of a graph G is a maximal matching if

it is not a subset of another matching. A matching M is a maximum matching if every

matching in G has size at most |M |. Note that a maximum matching is a maximal

matching but the converse is not necessarily true.

• Maximal independent set: A vertex subset I ⊆ V is a maximal independent set

(MIS) of G if no two vertices in I are connected and any vertex in V \ I has a neighbor

in I.

• Vertex cover: A vertex subset C ⊆ V is a vertex cover of G if any edge in the graph

has at least one endpoint in U . We are often interested in the minimum size vertex

cover.

• Graph connectivity: A connected component of G is a maximal subset U ⊆ V such

that there is a path between any pairs of vertices in U . The graph connectivity problem

asks to identify all connected components of G.

11

Alternating and augmenting paths. Given a matching M , an alternating path P for M

is a path whose edges alternatively belong to M and do not belong to M . An augmenting

path for M is an alternative path that starts and ends with edges that do not belong to M .

Given an augmenting path P for M , we use

M ⊕ P := (M \ P) ∪ (P \M)

to denote the matching obtained by flipping the containment of edges of P in M . Given two

matchings M and M ′, their symmetric difference M∆M ′ is a graph including only the edges

that belong to exactly one of M and M ′.

2.2 Non-graph Notation

For any positive integer k, we use [k] to denote the set {1, . . . , k}. We use the term with

high probability, abbreviated “w.h.p.” to denote probability at least 1 − 1/nΩ(1) where n is

the number of vertices in the input graph G. We also use the term with exponentially high

probability, abbreviated “w.e.h.p.” to denote probability at least 1− e−nΩ(1)
.

2.3 Probabilistic Tools

Throughout the thesis, we will rely on a number of concentration bounds. The first one is

the standard Chernoff bound for sum of independent Bernoulli random variables:

Proposition 2.1 (Chernoff Bound; cf. [4]). Let X1, . . . , Xn be independent Bernoulli random

variables and define X :=
∑n

i=1Xi. For any λ > 0,

Pr[|X −E[X]| ≥ λ] ≤ 2 exp

(
− λ2

3 E[X]

)
.

In some cases, we will need concentration bounds on more general functions of inde-

pendent random variables. For this purpose, we use two main bounds both of which concern

functions f(x1, . . . , xn) which have Lipschitz properties, namely, that changing each coor-

dinate xi has a relatively small change to the value of f . The first one is the Efron-Stein

inequality which bounds the variance:

Proposition 2.2 (Efron-Stein inequality [148]). Fix an arbitrary function f : {0, 1}n → R

and let X1, . . . , Xn and X ′1, . . . , X
′
n be 2n i.i.d. Bernoulli random variables. For ~X :=

(X1, . . . , Xn) and ~X(i) := (X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn), we have

Var(f(~X)) ≤ 1

2
·E
[n∑
i=1

(
f(~X)− f(~X(i))

)2]
.

12

We also use the following form the of the bounded differences inequality. We say a

function f is λ-Lipschitz if changing each coordinate of its input changes the value of f by

at most λ.

Proposition 2.3 (Bounded differences inequality). Let f be a λ-Lipschitz function on k

variables, and let ~X = (X1, . . . , Xk) be a vector of k independent (not necessarily identically

distributed) random variables. Then,

Pr
[
f(~X) ≥ E[f(~X)] + t

]
≤ exp

(−2t2

kλ2

)
.

We will use the following direct corollary of Proposition 2.3.

Corollary 2.4. Let f be a λ-Lipschitz function on k variables, and let ~X = (X1, . . . , Xk)

be a vector of k independent (not necessarily identically distributed) random variables. Then

with probability 1− e−nΩ(1)
:

f(~X) ≤ E[f(~X)] + λn0.01
√
k.

We also need Lovász Local Lemma (LLL) in our proofs.

Proposition 2.5 (Lovász Local Lemma; cf. [4]). Let p ∈ (0, 1) and d ≥ 1. Suppose E1, . . . , Et
are t events such that Pr (Ei) ≤ p for all i ∈ [t] and each Ei is mutually independent of all

but (at most) d other events Ej. If p · (d+ 1) < 1/e then Pr[∩ni=1Ei] > 0.

13

Chapter 3

Randomized Greedy as a Common Tool

As discussed in the introduction, one of the conceptual contributions of this thesis, is to show

that randomized greedy algorithms for maximal independent set and maximal matching are

extremely useful for large-scale graph processing. Particularly we use these algorithms in the

following chapters of this thesis, across various models of large-scale computation:

• In Chapter 4 we use properties of randomized greedy maximal matching (RGMM) to

design an exponentially faster MPC algorithm for maximal matching.

• In Chapters 7 and 8 we respectively show how to maintain randomized greedy maximal

independent set (RGMIS) and RGMM efficiently in the fully dynamic setting. In Chap-

ter 9 we further build on this approach and show how to maintain a better-than-two

approximate matching in the fully dynamic setting.

• In Chapter 6 we use RGMM to design time-optimal sublinear algorithms for estimating

the size of maximum matching and minimum vertex cover.

In this chapter, we present some of the useful properties of randomized greedy algo-

rithms that we will use in the forthcoming parts of the thesis.

3.1 Definitions

Let us start with the formal definition of a greedy maximal independent set which processes

the vertices in some given order and greedily adds them to the independent set.

14

GMIS(G, πV): Greedy maximal independent set with respect to ordering π of vertices.

Input: Graph G = (V,E) and a permutation πV over the vertex-set V .

Initialize I ← ∅. Iterate over the vertices in the order of πV . Upon visiting a vertex v, if
no neighbor of v belongs to I, add v to I.

We denote the final value of I, which is a maximal independent set of G, by GMIS(G, πV).

A greedy maximal matching is defined similarly, except that we iterate over the edges

instead of the vertices, and greedily add them to a matching.

GMM(G, πE): Greedy maximal matching with respect to ordering πE of edges.

Input: Graph G = (V,E) and a permutation πE over the edge-set E.

Initialize M ← ∅. Iterate over the edges in the order of πE . Upon visiting an edge e, if no
edge incident to e belongs to M , add e to M .

We denote the final value of M , which is a maximal matching of G, by GMM(G, πE).

Observation 3.1. The greedy maximal matching algorithm is equivalent to running the

greedy MIS algorithm on the line graph. That is, for any graph G and any permutation

π over the edge-set of G,

GMM(G, π) = GMIS(L(G), π).

The two algorithms above are particularly useful if πV and πE are chosen uniformly

at random from all possible permutations of V and E respectively. We call the resulting ob-

jects randomized greedy maximal independent set (RGMIS) and randomized greedy maximal

matching (RGMM) respectively.

Random ranks instead of random permutations: One useful way to draw permutations

πV and πE uniformly at random from all possibilities, is to draw independent ranks. That

is, suppose that for each vertex v ∈ V , we draw a real ρv independently and uniformly from

[0, 1]. We can then obtain πV by sorting the vertices in the increasing order of their ranks.

It is not hard to see that the resulting permutation πV is chosen uniformly from all possible

permutations. We can obtain πE similarly by drawing random ranks on the edges and sorting

them with respect to these ranks.

Drawing independent random ranks instead of directly picking a random permutation

has many benefits. For instance, by conditioning on the rank of an element (say a vertex

or an edge), the ranks of all other elements remain independent. On the contrary, however,

once we condition on the location of an element in a permutation, other elements cannot

15

be in this location and so they are not entirely independent. This approach is also useful

for dynamic graphs, where the edges of the graph change over time, or for sublinear-time

algorithms where we do not have access to all the edges.

3.2 Local Simulation Oracles and Query-Complexity

Let us first focus on the RGMM algorithm. Suppose that we would like to determine if a

given vertex (or edge) belongs to the produced matching for some given ordering π. Of course

we can run GMM(G, π) in Θ(m+n) time and answer this. But can we do better? Due to the

greedy structure of the algorithm, we can indeed answer such queries much more efficiently.

Intuitively, an edge e belongs to GMM(G, π) if and only if none of the other incident edges to

e with a lower rank than e appear in GMM(G, π). This naturally suggests a local simulation

oracle to determine if a given edge belongs to GMM(G, π) without constructing GMM(G, π)

on the whole graph.

The following local procedure, which formalizes the intuition above, was first proposed

by Nguyen and Onak [133]. We note that the algorithm here is slightly different from the

algorithm of [133] in that it “caches” recursive calls.

Algorithm 1: “edge oracle” EO(e, π): determines if e ∈ GMM(G, π).

1 if we have already computed EO(e, π) then return the computed answer.;
2 Let e1, . . . , ek be all the edges incident to e such that π(e1) < . . . < π(ek) < π(e).
3 for i in 1 . . . k do
4 if EO(ei, π) = TRUE then return FALSE;

5 return TRUE

Algorithm 2: “vertex oracle” VO(v, π): determines if a given vertex v is matched by
GMM(G, π).

1 Let e1, . . . , ek be the edges incident to v with π(e1) < . . . < π(ek).
2 for i in 1 . . . k do
3 if EO(ei, π) = TRUE then return TRUE;

4 return FALSE

We note that a similar local procedure can also be defined for the related Greedy MIS

algorithm. The intuition is the same: If a vertex has no lower rank neighbor in the greedy

MIS, it must itself be in the greedy MIS.

16

Algorithm 3: “MIS oracle” MISO(v, π): determines if v ∈ GMIS(G, π).

1 if we have already computed MISO(v, π) then return the computed answer.;
2 Let u1, . . . , uk be all the neighbors of v such that π(u1) < . . . < π(uk) < π(v).
3 for i in 1 . . . k do
4 if MISO(ui, π) = TRUE then return FALSE;

5 return TRUE

Having defined these local simulation oracles, the next question is are they really faster

than the naive approach that runs the whole algorithm? For some pathological permutation

π, the local oracles above can be as slow as the naive approach. But when the permutations

are random, the local simulations tend to be much faster.

The number of recursive calls needed to compute the oracle values is often called the

“query-complexity” of these randomized greedy algorithms and if the starting vertex/edge is

chosen as random, it is called the “average query-complexity.”

For the maximal matching oracle, in particular, and for a vertex v (resp. edge e) let us

use T (v, π) (resp. T (e, π)) to denote the number of recursive calls to the edge oracle EO(·, π)

over the course of answering VO(v, π) (resp. EO(e, π)). We emphasize that for some edge

e′, EO(e′, π) may be called multiple times during the execution and we count all of these

in T (v, π), though only the first call to EO(e′, π) may generate new recursive calls due to

caching.

We prove the following result on the average query-complexity of RGMM in Chapter 6:

Theorem 3.2. For a vertex v ∼ V chosen uniformly at random and for a permutation π

chosen independently and uniformly at random,

E
v∼V,π

[T (v, π)] = O(d̄ · log n),

where recall that n := |V | and d̄ is the average degree of the graph.

Remark 3.3. In a complete bipartite graph with Θ(d̄) vertices in one part and Θ(n) vertices

in the other, for n� d̄, the average query-complexity is Ω(d̄). Hence Theorem 3.2 is tight up

to a logarithmic factor.

The average query-complexity of RGMM and RGMIS were studied extensively prior

to our work following the paper of Nguyen and Onak [133]. For the RGMIS algorithm, in

particular, Yoshida, Yamamoto, and Ito [154] proved in a beautiful paper that for a vertex

v chosen uniformly at random and for a random permutation π, the MIS oracle MISO(v, π)

17

leads to a total of O(d̄+ 1) expected recursive calls to MISO(·, π).

The result of Yoshida et al. [154] can also be adapted to the RGMM algorithm, but the

bound would be weaker than Theorem 3.2. First observe that due to Observation 3.1, which

asserts RGMM is equivalent to running RGMIS on the line-graph, the result of Yoshida et al.

[154] as black-box implies the following bound on the query-complexity of a random edge

(different from Theorem 3.2 which is for a random vertex):

Proposition 3.4 ([154]). For an edge e ∼ E chosen uniformly at random and for a permu-

tation π chosen independently and uniformly at random,

E
e∼E,π

[T (e, π)] = O(1 + L/m)

where L is the number of edges in the line-graph.

While it is not a black-box reduction, we note that the proof of [154] can be adapted

to also work for random vertices. Particularly, it implies that for a random vertex v,

Ev∼V,π[T (v, π)] = O(1 + L/n). In general, L/n can be upper bounded by O(d̄ · ∆), and

there are graphs1 for which L/n = Ω(d̄ · ∆). Hence, Theorem 3.2 improves the result of

[154] by a factor of nearly ∆. This improvement is crucial for our time-optimal sublinear

algorithms in Chapter 6.

3.3 Robustness Property

The next property of the randomized greedy algorithms that we highlight is their robustness.

Namely, that the outputs of RGMM and RGMIS do not change much under changes to the

underlying graph.

A Deterministic Robustness Property of GMM: We start with the greedy maximal

matching algorithm and prove a robustness property for it which holds for all permutations

(i.e., not necessarily a random permutation). The property is that modifying a single vertex

or edge of G does not change the set of matched vertices too much. Note that that the set

of edges in the matching can still change significantly.

Lemma 3.5 (Deterministic Lipschitz Properties of GMM). Fix some graph G = (V,E) and

let ρ : E → [0, 1] be an associated list of priorities:

1Consider a complete bipartite graph with ∆ + 1 vertices in one part and Θ(d̄) vertices in the other.

18

1. If graph G′ is derived by removing a vertex of G, then there are at most 2 vertices that

are matched in exactly one of GMM(G, ρ) and GMM(G′, ρ).

2. If graph G′ is derived by removing an edge of G, then there are at most 2 vertices that

are matched in exactly one of GMM(G, ρ) and GMM(G′, ρ).

3. If ρ′ is derived by changing a single entry of ρ, then there are at most 2 vertices that

are matched in exactly one of GMM(G, ρ) and GMM(G, ρ′).

Proof. We start with the proof of the first part. Suppose that G′ is obtained by removing

some vertex v from G. Let M := GMM(G, ρ) and M ′ := GMM(G′, ρ). Furthermore, let

D := M⊕M ′ denote the symmetric difference of M and M ′, i.e. the set (M \M ′)∪(M ′ \M).

Note that the match-status of a vertex v differs in M and M ′ if and only if its degree in D

is one. Therefore, it suffices to show that there are at most two such vertices in D.

We first claim that D has at most one connected component (apart from singleton

vertices). For sake of contradiction, suppose that D has multiple such connected components;

fix one component C that does not contain v. Let e be the edge in C with the lowest rank.

The fact that no lower rank edge that is connected to e is part of M or M ′ (otherwise e

would not be the highest priority edge in C) shows that e has to belong to both M and M ′.

By definition of D, this means that e /∈ D which is a contradiction. Next, observe that since

D is composed of the edges of two matchings, its maximum degree is at most 2 and thus its

unique component is either a path or a cycle. The latter has no vertex of degree one and the

former has two; proving part 1 of Lemma 3.5.

The proof of the other two parts of Lemma 3.5 follows from a similar argument. If

an edge e is removed from G or its entry in ρ is changed, then for the same argument, the

symmetric difference M⊕M ′ of the two greedy matchings M and M ′ that are obtained would

contain only one connected component which has to contain e. Since this component is a cycle

or a path, the match-statuses of at most two vertices are different in the two matchings.

While Lemma 3.5 holds for all permutations, if we in addition assume that the permuta-

tion is random, much more can be said about how the outputs of RGMM and RGMIS change.

For example, let G′ be obtained by removing a vertex or edge from a graph G = (V,E).

Then it is known that the outputs of GMIS(G, ρ) and GMIS(G′, ρ) for a random rank func-

tion ρ : V → [0, 1] differ in O(1) vertices in expectation [64, Theorem 1]. We further show

in Chapter 7 (Theorem 7.10) that even the number of vertices whose eliminator changes

can be bounded by O(log n) where the eliminator of a vertex is its lowest-rank neighbor (or

19

itself) that joins GMIS. (Note that the eliminator of a vertex may change without chang-

ing its MIS-status.) Applying these results on RGMIS to the line-graph, we can strengthen

Lemma 3.5 and even bound the expected number of edges that leave/join GMM after an edge

insertion/deletion by O(1).

3.4 Sparsification Property

The next sparsification property asserts that if we run RGMIS (resp. RGMM) on the first

p fraction of the vertices (resp. edges) in the random permutation, then in the remaining

graph, the maximum degree can be bounded by O(logn
p) w.h.p. This property has been used

in various models of computation. Here we present a proof for RGMIS and the bound for

RGMM follows as a corollary.

Lemma 3.6. Fix a graph G = (V,E), let ρ : V → [0, 1] be a random rank function, and let

p ∈ [0, 1] be a parameter. Let Ip be the subset of vertices v in GMIS(G, ρ) with ρ(v) ≤ p. Let

G′ be the graph obtained by removing the vertices in Ip and their neighbors from G′. With

probability 1− 1/n4, G′ has maximum degree 5 lnn
p .

Proof. Fix a vertex v; we prove that

Pr
[
v belongs to G′ and degG′(v) > (5 lnn)/p

]
≤ 1/n5. (3.1)

The lemma then follows by a union bound over all n vertices.

To prove Eq (3.1), let us define Gv := G[V \ ΓG(v)] to be the graph obtained by

removing v and all of its neighbors from G and let Ivp := {v ∈ GMIS(Gv, ρ) | ρ(v) ≤ p}. We

prove Eq (3.1) holds even if the ranks of vertices in Gv are picked adversarially.

Let L = {u ∈ NG(v) | ΓG(u) ∩ Ivp = ∅} be the set of neighbors of v that do not have a

neighbor in Ivp . Since the ranks are independent, we have

Pr[there exists u ∈ L with ρ(u) ≤ p] = 1− (1− p)|L|. (3.2)

Next, we claim that if there is a vertex u ∈ L with ρ(u) ≤ p, then Ip 6= Ivp . Suppose

for the sake of contradiction that such u exists and Ip = Ivp . The fact that ρ(u) ≤ p implies

ΓG(u) ∩ Ip 6= ∅ since Ip is a maximal independent set of vertices with rank ≤ p. Combined

with ΓG(u) ∩ Ivp = ∅ which follows from u ∈ L, this implies that there must be a vertex in

ΓG(u) that belongs to Ip but not Ivp , contradicting Ip = Ivp . As such, if there is any vertex in

20

L with rank ≤ p then Ivp 6= Ip which combined with Eq (3.2) implies:

Pr[Ivp = Ip] ≤ (1− p)|L|. (3.3)

Our next crucial observation is that if v belongs to G′, then Ip = Ivp . This follows from

the fact that if v ∈ G′, then no vertex in ΓG(v) belongs to Ip and so removing ΓG(v) from

the graph should not change the independent set up to rank p. Hence, by Eq (3.3),

Pr[v belongs to G′] ≤ (1− p)|L|. (3.4)

To conclude the proof of Eq (3.1), note that if |L| > (5 lnn)/p, then by equation above

the probability of v belonging to G′ is at most (1− p)(5 lnn)/p ≤ 1/n5. On the other hand, if

|L| ≤ (5 lnn)/p, then under the event that v ∈ G′, Ip = Ivp by the discussion above and thus

degG′(v) = |L| ≤ (5 lnn)/p.

As a corollary of Lemma 3.6, we also get the same degree reduction lemma for RGMM.

Lemma 3.7. Fix a graph G = (V,E), let ρ : E → [0, 1] be a random rank function, and let

p ∈ [0, 1] be a parameter. Let Mp be the subset of edges e in GMIS(G, ρ) with ρ(e) ≤ p. Let

G′ be the graph obtained by removing all the edges connected to at least one edge in Mp. With

probability 1− 1/n4, G′ has maximum degree 5 lnn
p + 1 = O(lnn

p).

Proof. Since RGMM on G is equivalent to RGMIS on L(G) by Observation 3.1, Lemma 3.6

bounds the maximum degree in L(G′) by 5 lnn
p with probability 1− 1/n4. The lemma follows

since the maximum degree in the line-graph is always at least as large as the maximum degree

of the original graph minus one.

21

Part I

Massively Parallel Computation

As we discussed in Chapter 1, modern parallel frameworks such as MapReduce [80],

Hadoop [152], Spark [155], and their variants provide one of the most successful and widely

applied approaches for processing massive data. But what is the true computational power

of modern parallel frameworks?

To answer the question above, we first need a computational model. The Massively

Parallel Computations (MPC) model which was first introduced by Karloff, Suri, and Vassil-

vitskii [109] and was further refined in the works of [98, 25, 8], serves as a clean abstraction

of all of these frameworks without getting into the implementation details of these systems.

Indeed, the MPC model has become the standard theoretical model for this purpose. We first

give a slightly more formal definition of the model and then delve into our contributions.

The MPC Model: In the Massively Parallel Computations (MPC) model, an input of size

N is initially distributed among M machines, each with a local space of size S. Computation

proceeds in synchronous rounds in which each machine can perform an arbitrary local com-

putation on its data for free, and can send messages to other machines. The messages are

delivered at the start of the next round. Furthermore, the total messages sent or received by

each machine in each round should not exceed its memory. The main parameter to optimize

is the number of rounds that the algorithm takes while using a sublinear in N space per

machine (i.e., S = N1−Ω(1)) and an, ideally, linear in N total space (i.e., M × S = O(N)).

Our focus is particularly on graph problems in the MPC model. As before, we denote

the input graph by G = (V,E) and use n and m to denote the number of vertices and edges

in G. The edge-set of G is initially distributed arbitrarily among the machines, meaning that

N = Θ(m) words (or Θ(m log n) bits). While the input size relates to m, it is actually often

easier to parametrize the space per machine S by the number of vertices n instead of m. Two

of the most popular regimes of parameters for graph algorithms in the MPC model include:

Near-linear Regime: Here the space per machine is S = O(n). This regime of space is

particularly useful for dense graphs whose edges do not fit the memory of a single

machine, but the vertices do.

Strictly Sublinear Regime: Here the space per machine is S = nδ for a constant δ < 1.

This regime of space is most useful for sparse graphs where even the vertex-set is too

large and does not fit into one machine.

23

Chapter 4

Massively Parallel Maximal Matching

In this chapter, we consider the maximal matching problem in the MPC model. For many

graph problems, including maximal matching, O(log n) round MPC algorithms can be achieved

in a straightforward way by simulating traditional parallel (PRAM) algorithms [126, 104, 6]

using nΩ(1) space. But can we do better? Particularly, many graph problems are known to

admit poly(log log n) or O(1) round MPC algorithms. Can we achieve the same for maximal

matching? This is the main question that we attempt to address in this chapter.

Related Work: One of the first algorithms for the maximal matching problem in the MPC

model was given by Lattanzi, Moseley, Suri, and Vassilvitskii [119]. Allowing a super-linear

in n space of n1+δ, the algorithm of [119] terminates in O(1/δ) rounds. Note, however, that

with O(n) space, this algorithm still requires Ω(log n) rounds. For the related problem of

approximate matching (i.e., relaxing maximality) Czumaj, Lacki, Madry, Mitrovic, Onak,

and Sankowski [78] in a breakthrough result gave a poly(log log n)-round algorithm that uses

O(n) local space. The round-complexity was soon after strengthened to O(log log n) with

the same space requirement [93, 15]. Unfortunately, however, this progress on approximate

matching offers no help for maximal matching. The reason, roughly speaking, is that these

algorithms leave a (small) constant fraction of the remaining (matchable) vertices unmatched

in each round and thus they also require up to Ω(log n) rounds to ensure maximality of the

solution. As a result, despite this remarkable progress the O(log n)-round algorithms of the

1980’s remained the fastest for maximal matching in the MPC model with O(n) space. An

improvement over this bound was later achieved by Ghaffari and Uitto [92] who presented

an Õ(
√

log n) round algorithm in the strictly sublinear regime.

Our Contribution: Our main result in this section is an exponentially faster algorithm for

maximal matching:

24

Theorem 4.1 ([45]). Given an n-vertex graph G with m edges and max degree ∆, there

exists a randomized MPC algorithm for computing a maximal matching that

(1) takes O(log log ∆) rounds using O(n) space per machine,

(2) or takes O(log 1
δ) rounds using O(n1+δ) space per machine, for any δ ∈ (0, 1).

The algorithm succeeds with probability 1− e−nΩ(1)
and requires O(m) total space.

Theorem 4.1 part (1) provides the first logo(1) n round MPC algorithm for maximal

matching that does not require a super-linear space in n. In fact, it improves exponentially

over the prior algorithms in this regime, which all take logΩ(1) n rounds [126, 119, 92]. Fur-

thermore, Theorem 4.1 part (2) exponentially improves over the δ-dependency of Lattanzi et

al.’s algorithm [119] which requires O(1/δ) rounds using O(n1+δ) space.

We further show in [45] that the space can be slightly improved to n/2Ω(
√

logn) while

still taking O(log log n) rounds. For simplicity, however, we will not go through the details

of this latter result in this thesis.

While Theorem 4.1 requires a space close to linear in n, we further show in the following

theorem that a poly(log log n)-round algorithm also exists in the strictly sublinear regime

provided that the arboricity λ of the graph is not too large. This result is particularly

interesting because the main motivation behind the strictly sublinear space regime is indeed

the case of sparse graphs, and low arboricity graphs include most sparse graphs of interest

such as planar graphs, minor-free graphs, graphs of bounded degree, bounded genus, bounded

treewidth, etc.

Theorem 4.2 ([37]). Given an n-vertex graph G with m edges and arboricity λ, there exists

an O(
√

log λ·log log λ+log2 log n) round randomized MPC algorithm for computing a maximal

matching (and a maximal independent set) of G. The algorithm can be adapted to use a local

space of O(nδ) for any fixed δ > 0 and requires a total space of O(m).

Our main focus in this chapter will be on proving Theorem 4.1, and will only mention

the key ideas behind the proof of Theorem 4.2 in Section 4.5.

Conceptual Contribution

We prove Theorem 4.1 by providing a novel analysis of an extremely simple and natural

algorithm. The algorithm edge-samples the graph, randomly partitions the vertices into

disjoint subsets, and finds a greedy maximal matching within the induced subgraph of each

25

partition. This partitioning is useful since each induced subgraph can be sent to a different

machine. We show that if we commit the edges of each of these greedy matchings to the

final output, the vertex degrees in the residual graph are drastically dropped. This resolves

a conjecture of Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [78] who suspected

that a variant of this algorithm might work and left its analysis as one of their main open

problems:

“Finally, we suspect that there is a simpler algorithm for the problem [...] by

simply greedily matching high-degree vertices on induced subgraphs [...] in every

phase. Unfortunately, we do not know how to analyze this kind of approach.”

We give a high-level overview of the analysis in Section 4.1.

Other Implications

Our algorithm also has a few other implications when used as a black-box.

Corollary 4.3. By a well-known reduction, the set of matched vertices in a maximal matching

is a 2-approximation of minimum vertex cover. As such, algorithms of Theorem 4.1 can also

be applied to 2-approximation of minimum vertex cover.

The problem of whether an approximate vertex cover can be found faster in MPC with

O(n) space was first asked by Czumaj et al. [78]. Subsequent works showed that indeed

O(log log n) algorithms are achievable and the approximation factor has been improved from

O(log n) to O(1) to (2 + ε) [11, 93, 15]. Corollary 4.3 reaches a culminating point: If we

restrict the machines to run a polynomial-time algorithm, which is a standard assumption

(see [109, 8]), no algorithm can achieve a better approximation under the Unique Games

Conjecture [111].

Corollary 4.4. By known reductions [34, 120], Theorem 4.1 implies an O(log log ∆) round

algorithm for maximal matching in the congested clique model. It also leads to O(log log ∆)

round congested clique algorithms for 2-approximate vertex cover, (1 + ε) approximate maxi-

mum matching, and (2 + ε) approximate maximum weighted matching by known reductions.

Prior to our work, the fastest known algorithm for maximal matching in the congested

clique model required Õ(
√

log n) rounds [92]. Corollary 4.4 exponentially improves this.

26

Corollary 4.5. For any constant ε ∈ (0, 1), Theorem 4.1 can be used to give algorithms

for (1 + ε) approximate matching and (2 + ε) approximate maximum weighted matching in

asymptotically the same number of rounds and space.

The reduction from maximal matching to (1 + ε) approximate matching is due to an

algorithm by McGregor [128] (see [15]) and the reduction to (2 + ε) approximate weighted

matching is due to an algorithm by Lotker, Patt-Shamir, and Rosén [124] (see [78]). We also

note that if the space is O(n polylog n), then our algorithm can be used in a framework of

Gamlath, Kale, Mitrovic, and Svensson [90] to get an O(log log ∆) round algorithm for (1+ε)

approximate maximum weighted matching.

Finally, we note that Corollary 4.5 strengthens the round-complexity of the results

in [78, 93, 15] from O(log log n) to O(log log ∆) using O(n) space. To our knowledge, the

algorithms of [78, 93, 15] do require Ω(log log n) rounds even when ∆ = poly log n since they

switch to an O(log ∆) round algorithm at this threshold. Corollary 4.5, however, implies an

O(log log log n) round algorithm on such graphs.

Recent Development

After the first publication of Theorem 4.1 in [45], Nowicki and Onak [134] proved that the

same algorithm can be used to maintain a maximal matching efficiently in a dynamic variant

of the MPC model, where batches of edge updates (insertions/deletions) have to be handled.

4.1 High Level Technical Overview

As discussed above, if the space per machine is n1+Ω(1), we already know how to find a max-

imal matching efficiently [119]. The main problem, roughly speaking, is that once the space

becomes O(n), the computational power of a single machine alone does not seem to be suffi-

cient to have a significant effect on the whole graph. More concretely, the known algorithms

that work based on ideas such as edge-sampling the graph into a single machine and finding

a matching there [119, 30, 1], all require Ω(log n) rounds of repeating this procedure if the

space is O(n).

Vertex partitioning [109, 23, 78, 15, 93], which in the context of matching was first

used by [78], helps in utilizing several machines. The general idea is to randomly partition

the vertices and find a matching in the induced subgraph of each partition individually in

a different machine. It turns out that the choice of the internal matching algorithm over

27

these induced subgraphs, has a significant effect on the global progress made over the whole

graph. This is, in fact, the fundamental way that the algorithms within this framework differ

[78, 15, 93].

For the internal matching algorithm, we use randomized greedy maximal matching (see

Chapter 3). Recall that this procedure iterates over the edges in a random order, and at the

time of processing each edge, adds it to the matching iff none of its incident edges are part

of the matching so far. We give a brief overview of our algorithm first, then describe the key

ideas behind its analysis.

The algorithm. Our main algorithm, which is formalized as Algorithm 5, uses three ran-

domization steps, all of which are necessary for the analysis:

• An ordering π over the edges is chosen uniformly at random.

• Each edge of the graph is sampled independently with some probability p.

• For some k, the vertex set V is partitioned into disjoint subsets V1, . . . , Vk where the

partition of each vertex is chosen independently at random.

After these steps, for any i ∈ [k], we put the edge-sampled induced subgraph of Vi into

machine i and compute a greedy maximal matching Mi according to ordering π. We note

that the choice of k and p in Algorithm 5 ensure that the induced subgraphs fit the memory

of a machine.

The analysis outline. Observe that M =
⋃
i∈[k]Mi is a valid matching since the partitions

are vertex disjoint. The key to our results is to show that if we commit the edges of M to

the final maximal matching, then the degree of almost all vertices drops to ∆1−Ω(1) in the

residual graph. The main challenge here is to bound the vertex degrees across the partitions.

To do this, for any vertex v and any partition i ∈ [k], we let Zv,i denote the number of

neighbors of v in partition i that remain unmatched in greedy matching Mi. Note that Zv,i is

a random variable of the three randomizations involved in the algorithm, and that
∑

i∈[k] Zv,i

is precisely equal to the remaining degree of vertex v. We show the abovementioned degree

reduction guarantee through a concentration bound on random variable Zv,i.

Let us first outline how a concentration bound on Zv,i can be useful. Suppose, wishfully

thinking, that Zv,i = (1± o(1)) E[Zv,i] for every i ∈ [k] with high probability. By symmetry

of the partitions, we have E[Zv,i] = E[Zv,1] for every i ∈ [k]. This means that all random

variables Zv,1, . . . , Zv,k take on the same values ignoring the lower terms. Now, if E[Zv,1] is

28

small enough that k · E[Zv,1] < ∆1−Ω(1), we get the desired bound on residual degree of v.

Otherwise, due to the huge number of unmatched neighbors in its own partition, we show

that v must have been matched and, thus, cannot survive to the residual graph!

Unfortunately, Zv,i is a rather complicated function and it is not straightforward to

prove such sharp concentration bounds on it. Recall that Chernoff-Hoeffding bounds work

only on sum of independent random variables. Furthermore, concentration bounds obtained

by Azuma’s or other “dimension dependent” inequalities seem useless for our purposes: be-

cause the partition of every vertex in the graph may potentially affect Zv,i, these would give

bounds on the order of Zv,i = E[Zv,i]± Õ(
√
n). As E[Zv,i] should be on the order of ∆, this

is useless when ∆ is small.

Instead of an exponential concentration bound, we aim for a weaker concentration

bound by proving an upper bound on the variance of Zv,i. To achieve this upper bound, we

use a method known as the Efron-Stein inequality (Proposition 2.2) which plays a central

role in our analysis. On one hand, this weaker concentration bound is still strong enough

for our purpose of degree reduction. On the other hand, since we are only bounding the

variance, the required conditions are much more relaxed and can be shown to be satisfied by

the algorithm.

Recall that to bound the variance using the Efron-Stein inequality, we have to show

that sum of changes to the function by re-drawing its entries is not too large. To do this, we

use the bounds on the average query-complexity of RGMM (see Section 3.2). Specifically, if

we can determine whether vertex v is matched by querying only few others, modifying other

parts of the graph should not affect v’s status. This application of average query-complexity

is rather surprising and in the contrary to how it has been used in the literature (mostly for

sublinear time algorithms). Indeed, our main conceptual contribution of this chapter is to

show that:

sublinear-time algorithms are useful for proving concentration bounds too!

4.2 The Degree Reduction Algorithm

As discussed in Section 4.1, the key to proving Theorem 4.1 is an algorithm to reduce the

graph degree by a polynomial factor. The precise statement of this lemma is as follows:

Lemma 4.6 (degree reduction). There is an O(1) round MPC algorithm to produce a match-

ing M , with the following behavior w.e.h.p.: it uses n/∆Ω(1) space per machine and O(m)

29

space in total, and the residual graph G[V \M] has maximum degree ∆1−Ω(1).

Our main result, and the technical core of our analysis in proving Lemma 4.6 lies in

showing that the following Algorithm 5 significantly reduces the degree of most vertices.

Algorithm 4: This algorithms gets a graph G = (V,E) with maximum degree ∆ and
outputs a matching M of G.

1 Permutation: Choose a permutation π uniformly at random over the edges in E.

2 Edge-sampling: Let GL(V,L) be an edge-sampled subgraph of G where each edge in
E is sampled independently with probability p := ∆−0.85.

3 Vertex partitioning: Partition the vertices of V into k := ∆0.1 groups V1, . . . , Vk such
that the partition of every vertex in V is chosen independently and uniformly at
random.

4 Each machine i ∈ [k] receives the graph GL[Vi] and finds the greedy maximal matching
Mi := GMM(GL[Vi], π).

5 Return matching M :=
⋃k
i=1Mi.

Some notation: When it is clear from the context, we abuse notation to useM for the vertex

set of matching M . In particular, we use G[V \M] to denote the graph obtained by removing

every vertex of M from G. Furthermore, for any vertex v ∈ V and matching M , we define

the residual degree degres
M (v) to be zero if v ∈ M , and otherwise degres

M (v) := degG[V \M](v).

Finally, we define the match-status of vertex v according to some matching M to be the

indicator for the event that v ∈M .

Specifically, we prove the following properties for Algorithm 5.

Lemma 4.7. Algorithm 5 has the following desirable behavior:

1. W.e.h.p., it uses n/∆Ω(1) space per machine.

2. W.e.h.p., it uses O(n) +m/∆Ω(1) space in total (aside from storing the input graph.)

3. The expected number of vertices v ∈ V such that degresM (v) > ∆0.99 is O(n/∆0.03).

We will prove Lemma 4.7 in Section 4.3 and we will prove Lemma 4.6 in Section 4.4.

Before this, let us show how the degree reduction algorithm of Lemma 4.6 can be used to

prove Theorem 4.1.

Proof of Theorem 4.1. The algorithm consists of r iterations that each commits a number of

edges to the final maximal matching using the algorithm of Lemma 4.6. In each iteration,

the maximum degree in the remaining graph is reduced from ∆ to ∆1−α given that ∆ > c

30

for some constant c and α. This ensures that by the end of iteration r, maximum degree is

at most max{c,∆(1−α)r}.

To get the first result, take r = Θ(log log ∆); at the end of this process, the residual

graph has degree O(1). At this point, we put the entire residual graph onto a single machine,

and compute its maximal matching. To get the second result, take r = Θ(log(1/δ)); at the

end of this process, the residual graph has degree nδ. At this point, we again put the entire

residual graph onto a single machine, and compute its maximal matching.

4.3 Matching Almost All High-Degree Vertices

We now turn to proving Lemma 4.7. We first need some notation for the analysis of Algo-

rithm 5. For simplicity, we write Gi for the graph G[Vi]. Note that Gi is different from GLi

in that GLi includes only a subset of the edges in Gi; those that were sampled in Line 2 of

Algorithm 5. We let Li be the set of edges {u, v} ∈ L with u, v ∈ Vi; that is, Li is the edge-set

of GLi . We further define χ to be the partition function of the vertices; that is, each vertex

select a value χ(v) u.a.r from [k], and then we set Vi = χ−1(i). We also note that throughout

the proof, we assume m ≥ n0.9. This assumption comes w.l.o.g. since otherwise one can put

all the edges into one machine with even sublinear memory of O(n0.9) and find a maximal

matching there.

We begin by analyzing the residual degree of a vertex within its own partition, which

are some simple consequences of the method used to generate L.

Claim 4.8. The following bounds on the edge set L hold w.e.h.p.:

1. Every i ∈ [k] has |Vi| = Θ(n/∆0.1).

2. The graph GL contains O(m/∆0.85) edges.

3. Each graph GLi contains O(n/∆0.05) edges.

Proof. The first property follows from a straightforward Chernoff bound, noting that E[Vi] =

n/k = n/∆0.1 ≥ poly(n). For the second property, observe that the expected number of edges

in GL is m · p = m/∆0.85. As we have discussed above, we can assume that m ≥ n0.9 and

we also know that ∆ ≤ n; therefore, m/∆0.85 ≥ n0.05 and by Chernoff’s bound the number

of such edges is O(m/∆0.85) w.e.h.p. For the third property, we consider two cases where

∆ ≥ n0.01 and ∆ < n0.01 separately.

31

Case 1: ∆ ≥ n0.01. For each vertex v ∈ Vi, its incident edge e = {u, v} will belong to GLi

if e is sampled in L and vertex u also belongs to Vi. Both of these events occur at the same

time with probability p · k−1 = ∆−0.95. This means that the expected number of neighbors

of v in GLi will be ∆ ·∆−0.95 = ∆0.05. Since we assumed ∆ ≥ n0.01, a simple Chernoff bound

can show that this random variable is concentrated around O(∆0.05) w.e.h.p. Combined with

the first property, the number of edges in each GLi will be O(n/∆0.1) ·O(∆0.05) = O(n/∆0.05)

w.e.h.p.

Case 2: ∆ < n0.01. Let U denote the number of edges in GLi . For the arguments discussed

above, we still have E[U] ≤ O(n/∆0.05). Furthermore, U can be regarded as a function of

the vertex partition χ and the edge set L. There are O(n∆) such random variables, and each

of these can change U by at most ∆. Therefore, by Corollary 2.4, w.e.h.p., we have

U ≤ E[U] + ∆ · n0.01 ·
√
O(n∆);

as ∆ ≤ n0.01 this in turn implies that U ≤ O(n/∆0.05) w.e.h.p.

These allow us to prove the first two parts of Lemma 4.7:

Proof of Lemma 4.7 part 1 and 2. For the space bounds, Claim 4.8 shows that for each GLi ,

we require O(n/∆0.05) space for its edges and O(n/∆0.1) for its vertices. Since ∆ is larger

than any constant, this is smaller than n/∆Ω(1). To show the bounds on total space usage

note that the total edge count of all the graphs GLi is clearly at most |L|, since each edge lives

on at most one machine, and this is at most m/poly(∆). Furthermore, storing partition of

each vertex requires only O(n) total space.

As we have discussed before, for any vertex v ∈ V and any i ∈ [k], we define the random

variable

Zv,i :=
∣∣Vi ∩NG[V \M](v)

∣∣,
to be the degree of vertex v in the ith partition of the residual graph G[V \M]. Note here

that v does not necessarily belong to Vi. With this definition, if a vertex v is not matched in

M , we have degres
M (v) = Zv,1 + · · ·+ Zv,k. We further define the related random variable Z ′v

as:

Z ′v :=

Zv,χ(v) if v /∈M

0 if v ∈M ,

which is equivalent to the residual degree of v in its own partition.

32

Claim 4.9. For any vertex v, we have Pr(Z ′v > ∆0.86) ≤ exp(−poly(∆)).

Proof. We will show that this bound holds, even after conditioning on the random variables

χ and π. Suppose now that v ∈ Vi and so we need to bound the probability that Zv,i > ∆0.86.

Note, here, that Z ′v = degres
Mi

(v). Also, Mi is formed by performing independent edge sampling

on G[Vi] and then taking the greedy maximal matching. Applying the degree reduction

property of random greedy maximal matching (Lemma 3.7), the probability that Z ′v >
ln(1/β)

p

can be bounded by β.1 Setting β = e−∆0.01
, we have Z ′v > ∆0.86 with probability at most

exp(−poly(∆)).

4.3.1 Analysis of the Inter-partition Degrees

The key to analyzing Algorithm 5 is to show that for most vertices v, the values of Zv,i take

on similar values across all possible indices i. We had sketched how this leads to the desired

bound on vertex degrees in Section 4.1; let us provide some more technical details here.

Recall from Section 4.1 that our concentration inequalities should not have an additive

factor depending on n or they become too weak to be useful as ∆ gets smaller. To overcome

this, we show that with careful analysis, the Efron-Stein inequality (Proposition 2.2) yields our

desired concentration bound; in particular, it gives concentration on the order Zv,i = E[Zv,i]±

∆1−Ω(1). However, we emphasize that this concentration bound is not with exponentially high

probability, or even with high probability: it only holds with a relatively small probability

1 − 1/ poly(∆). This is the reason that we can only show that the number of high-degree

vertices reduces by a 1/poly(∆) factor, and not that Algorithm 5 reduces the maximum

degree outright.

Due to symmetry, we may consider showing a concentration bound for Zv,1. Let us

furthermore assume that L and π have been fixed. Therefore, Zv,1 becomes only a function

of the vertex partitioning χ, or more precisely, a function of the set of vertices that belong to

partition V1. Let us define the vector ~x, by setting xv = 1 if χ(v) = 1, and xv = 0 otherwise.

We may write Zv,1(~x) to emphasize that Zv,1 is merely a function of ~x. Observe that ~x is

a vector of n i.i.d. Bernoulli-1/k random variables. To use the Efron-Stein inequality for

bounding the variance, we have to upper bound the right-hand-side of inequality

Var(Zv,1) ≤ 1

2
E
~x

[∑
w∈V

(
Zv,1(~x)− Zv,1(~x(w))

)2]
, (4.1)

1We note that Lemma 3.7 is proved specifically for β = 1/ poly(n) and the proof has to be slightly modified

for this guarantee; but the idea is essentially the same.

33

where ~x(w) is obtained by replacing the value of xw in ~x with x′w which is drawn independently

from the same distribution. In other words, the w summand of (4.1) corresponds to the effect

of repartitioning vertex w on the value of Zv,1. Thus, we need to show that for most of the

vertices in V , whether they belong to V1 or not does not affect Zv,1.

To show this, consider a game where we determine Zv,1(~x) by querying entries of ~x. The

queries can be conducted adaptively, i.e., each query can depend on the answers to previous

queries. If we show an upper bound βv on the number of queries required to determine

Zv,1(~x), then no matter what the other n − βv entries of ~x are, Zv,1(~x) remains unchanged

and so clearly Zv,1(~x) − Zv,1(~x(w)) = 0 for all such unqueried vertices w. (The subscript v

in βv is used to emphasize that the upper bound can be different for different choices of v.)

Therefore, one way to show that most vertices of V do not affect Zv,1 is to design an efficient

query process. We also note a particularly useful property of the Efron-Stein inequality in

(4.1) is that even an upper bound on the expected number (taken over choice of ~x) of queries

suffices.

In addition to showing that most vertices do not affect Zv,1, we also need to show that

the query process yields an appropriate Lipschitz property on Zv,1 as well. That is, even if

the query process can guarantee Zv,1(~x) − Zv,1(~x(w)) = 0 for most vertices w, we still have

to bound the value of (Zv,1(~x)−Zv,1(~x(w)))2 on those vertices w where Zv,1(~x) 6= Zv,1(~x(w)).

This also follows from the nice structure of the greedy maximal matching algorithm.

Claim 4.10 (Lipschitz property). For any vertex partitioning ~x, let ~x(w) be obtained by

changing the w index of ~x. Then (Zv,1(~x)− Zv,1(~x(w)))2 ≤ 4.

Proof. Suppose that xw = 0 which means x
(w)
w = 1. Let V1 and V ′1 denote the vertex

partitions due to ~x and ~x(w) respectively, i.e., V1 = {u | xu = 1} and V ′1 = {u | x(w)
u = 1}.

Observe that V1 and V ′1 differ in only one vertex w which belongs to V ′1 but not V1. Define

M1 := GMM(G[V1], π) and M ′1 := GMM(G[V ′1], π). By Lemma 3.5 part 1, there are at most

two vertices in V whose match-status differs between M1 and M ′1. Even if these two vertices

happen to be neighbors of v, we still have |Zv,1(~x)−Zv,1(~x(w))| ≤ 2 and thus get the desired

bound. The case with xw = 1 and x
(w)
w = 0 follows from a similar argument.

The Lipschitz property can be plugged directly into (4.1) to show Var(Zv,1) ≤ O(n∆−0.1).

In what follows, however, we describe a query process which significantly reduces this upper

bound to poly(∆) for nearly all the vertices, i.e., removes the dependence on n.

34

The query process. We start with a query process to determine whether a given edge be-

longs to matching M1(~x) – where here we write M1(~x) to emphasize that the parameters π, L

should be regarded as fixed and so matching M1 is only a function of the vertex partitioning

~x. This process is very similar to a generic edge oracle for the greedy matching (which we

discussed in Section 3.2), except that instead of querying the edges, it queries the entries of

the vector ~x.

Suppose that we have to determine whether a given edge e ∈ L belongs to the matching

M1(~x). Instead of revealing the whole vector ~x, first note that if one of the end-points of

e does not belong to V1, then e cannot be in the induced subgraph GL1 and thus we can

answer no immediately. Suppose that e appears in GL1 . Since the greedy maximal matching

algorithm processes the edges in the order of π, it suffices to recursively determine whether

any of the incident edges to e belongs to M1(~x) in the order of their priorities. At any point

that we find such incident edge to e, we immediately return no as e certainly cannot join

M1(~x). Otherwise e has to join M1(~x), thus we return yes. We summarize the resulting

query process as EOπ(e, ~x):

Algorithm 5: EOπ(e, ~x): A query-process to determine whether e ∈M1(~x).

1 Let e = {u, v}. Query xu and xv; if xu = 0 or xv = 0, then return FALSE.
2 Let e1, . . . , ed be the incident edges to e in GL sorted as π(e1) < π(e2) < · · · < π(ed).
3 for i = 1, . . . , d do
4 if π(ei) < π(e) then
5 if EOπ(ej , ~x) = yes then return FALSE

6 return TRUE

We also define a degree oracle DOπ(v, ~x) to determine the value of Zv,1(~x). This checks

whether each w ∈ NG(v) appears in V1 and is matched, which in turn requires checking

whether every edge incident to w appears in matching of GL[V1]:

Algorithm 6: DOπ(v, ~x): A query process to determine the value of Zv,1(~x).

1 c← 0
2 for all vertices u ∈ NG(v) do
3 Query xu. if xu = 1 then
4 Execute EOπ((u,w), ~x) for all vertices w ∈ NGL(u).
5 if EOπ((u,w), ~x) = no for all such vertices w then
6 c← c+ 1 . u is unmatched in M1

7 return c

35

Analysis of the query complexity. We now analyze the query complexity of the oracle

DOπ, i.e., the number of indices in ~x that it queries. For any vertex v, we let B(v) denote

the number of vertices that are queried when running DOπ(v). This is precisely the quantity

that we need to bound for arguing that Var(Zv,1) is small according to (4.1). Formally:

Claim 4.11. Fix any ~x, π, L and and let ~x(w) be a vector obtained by resampling the index

xw. Then ∑
w∈V

(Zv,1(~x)− Zv,1(~x(w)))2 ≤ 4B(v).

Proof. By definition, the value of Zv,1(~x) can be uniquely determined by only revealing indices

of ~x which are quered by DOπ(v, ~x). Therefore, changing other indices w of ~x cannot affect

Zv,1 and so Zv,1(~x)−Zv,1(~x(w)) = 0. There are B(v) indices queries by v. For any such index

w, Claim 4.10 shows that (Zv,1(~x)− Zv,1(~x(w)))2 ≤ 4.

To bound B(v), let us first define A(e) for an edge e ∈ L1 to be the number of edges

in L1, on which the edge oracle is called (recursively) in the course of running EOπ(e, ~x).

Note that when running EO, only edges that are in L1 can generate new recursive calls; other

edges are checked, but immediately discarded.

Claim 4.12. We have Eχ,L,π[
∑

e∈L1
A(e)] ≤ O(n).

Proof. Let us first suppose that the random variables L and χ are fixed. Thus also GLi is

determined. The only randomness remaining is the permutation π. As we are only inter-

ested in edges of L1, the edges outside L1 have no effect on the behavior of EOπ. Thus,

A(e) is essentially the query complexity of GMM(G1, π) under a random permutation. By

Proposition 3.4, we have:

E
π

[∑
e∈L1

A(e) | L, χ
]
≤ O(|L1|+ |R1|),

where R1 is the set of intersecting edge pairs in G1. Integrating now over the random variables

L and χ, we get:

E
[∑
e∈L1

A(e)
]
≤ O(E[|L1|+ |R1|]).

Each edge e ∈ E goes into L1 with probability p/k2 = ∆−1.05, and so E[|L1|] = m∆−1.05.

Likewise, G contains at most m∆/2 pairs of intersecting edges and each of these survives to

R1 with probability p2/k3 = ∆−2. Therefore, E[|R1|] ≤ m∆−1. Since m ≤ n∆, we therefore

get E[
∑

e∈L1
A(e)] ≤ O(n).

36

Claim 4.13. Suppose that we condition on the event that when running DOπ(v, ~x), we make

a total of t calls to EOπ(e, ~x) with e ∈ L1. Then the expected number of total entries of ~x

queried during DOπ(v, ~x) is at most O(∆1.15 + t∆0.15).

Proof. Let us condition on the random variables χ,L1 and π. This determines the full listing

of all edges in L1 that are queried during the execution of DOπ(v), because only such edges

can generate new recursive calls to EOπ. Thus, if we show that this bound holds conditioned

on χ,L1, π it will also show that it holds conditioned on the value t. The only remaining

randomness at this point is the set L \ L1.

Let J denote the set of edges in L1 queried during DOπ(v, ~x), with |J | = t. Then

DOπ(v, ~x) will query xu for all u ∈ NG(v), and it will query w for all w ∈ NGL(u) for all

such u ∈ NG(v). Finally, whenever it encounters edge e ∈ J , it will call EOπ(f, ~x) for some

edges f ∈ L \ L1 which touch e; each of these will query two vertices, but the query process

will not proceed further when they are discovered to lie outside L1.

The number of vertices u ∈ NG(v) queried is clearly at most ∆. Now let us fix some

u ∈ NG(v) and count the number of vertices w ∈ NGL(u) queried. This is precisely degL(u),

and for any fixed u, the expected number of such vertices w is at most ∆p = ∆0.15. Thus,

the expected number of queried vertices in the first two categories is at most ∆1.15.

Finally, let us consider some edge e = (a, b) ∈ J . The number of corresponding queried

edges of L \ L1 is at most degL\L1
(a) + degL\L1

(b). Clearly again, for any fixed e we have

E[degL\L1
(a)] ≤ ∆p = ∆0.15 and similarly for b. Thus, the expected number of queried

entries of ~x corresponding to edge e is at most 4∆0.15.

Putting all these together, the expected number of queried entries of ~x can be bounded

by O(∆1.15 + t∆0.15).

Lemma 4.14. We have E[
∑

v∈V B(v)] ≤ O(n∆1.15) where the expectation is taken over

χ,L, π.

Proof. For any vertex v ∈ V , let us first define B′(v) to the number of edges in L1 that are

queried in the course of running DOπ(v). This can be bounded by:

B′(v) ≤
∑

u∈NG(v)∩V1

∑
w:(u,w)∈L1

A(u,w).

37

Summing over v ∈ V , we get:∑
v

B′(v) ≤
∑
v

∑
u∈NG(v)∩V1

∑
w:(u,w)∈L1

A(u,w) ≤
∑

(u,w)∈L1

A(u,w)
(∑
v∈NG(u)

1 +
∑

v∈NG(w)

1
)

≤ 2∆
∑
e∈L1

A(e).

Taking expectations and applying Claim 4.12, we therefore have

E
[∑

v

B′(v)
]
≤ 2∆ E

[∑
e∈L1

A(e)
]
≤ O(∆n).

By Claim 4.13, we have E[B(v) | B′(v) = t] ≤ O(∆1.15 + t∆0.15) for any vertex v. This

further implies that E[B(v)] ≤ O(∆1.15 + E[B′(v)]∆0.15); thus

E
[∑

v

B(v)
]
≤ O

(
∆0.15 E

[∑
v

B′(v)
]

+ ∆1.15n
)
≤ O(∆1.15n).

We now say that a vertex v is bad if E~x[B(v) | π, L] > ∆1.4 (i.e., Ω(∆0.25) times larger

than the average value given by Lemma 4.14) and good otherwise. Let us define B to be

the set of bad vertices. Note that, because B is based on a conditional expectation, it is

determined solely by the random variables π, L.

Claim 4.15. The expected size of B satisfies Eπ,L[|B|] ≤ O(n/∆0.25).

Proof. Observe that we have
∑

v∈V Eχ[B(v) | π, L] ≥ |B| · ∆1.4 with probability one since

for each bad vertex v ∈ B, by definition the expected value of B(v) is at least ∆1.4. Taking

expectations over π and L, we therefore get

E
π,L

[|B|] ≤ ∆−1.4 · E
π,L

[∑
v∈V

E
~x

[B(v)] | π, L]

]
= ∆−1.4

∑
v∈V

E[B(v)].

By Lemma 4.14, we have
∑

v∈V E[B(v)] ≤ O(∆1.15n). Putting these two bounds together

gives E[|B|] ≤ O(n∆−0.25).

Claim 4.16. For any π, L, any good vertex v has Var(Zv,1 | π, L) ≤ O(∆1.4).

Proof. By Claim 4.11, for any vertex partitioning ~x, we have
∑

w∈V (Zv,1(~x)−Zv,1(~x(w)))2 ≤

4B(v), where ~x(w) is obtained by changing the w entry of ~x. If we fix π, L and take expecta-

tions over ~x, this gives

E
~x

[∑
w∈V

(Zv,1(~x)− Zv,1(~x(w)))2 | π, L
]
≤ 4 E

~x
[B(v) | π, L].

38

On the other hand, by (4.1), any vertex v has

Var(Zv,1 | π, L) ≤ 1

2
E
~x

[∑
w∈V

(
Zv,1(~x)− Zv,1(~x(w))

)2 | π, L].
Combining the two inequalities gives Var(Zv,1 | π, L) ≤ 2 E[B(v) | π, L]. Since v is good

with respect to π, L, it satisfies E~x[B(v) | π, L] ≤ O(∆1.4) by definition. Thus

Var(Zv,1 | π, L) = O(∆1.4).

We are now ready to prove the main part of Lemma 4.7.

Proof of Lemma 4.7, part (3). For each vertex v ∈ V , define the random variable yv to be

the indicator function that degres
M (v) > ∆0.99 after running Algorithm 5. We need to show

that E[
∑

v∈V yv] ≤ O(n/∆0.03).

Depending on π and L, let us partition the vertices in V into two subsets B and G

of respectively bad and good vertices as defined before. Furthermore, fix τ = 2∆0.86 and

partition the set G of good vertices into two subsets H and L where for any vertex v ∈ H,

E~x[Zv,1 | π, L] ≥ τ and for any v ∈ L, E~x[Zv,1 | π, L] < τ . We have:∑
v∈V

yv =
∑
v∈B

yv +
∑
v∈L

yv +
∑
v∈H

yv.

By Claim 4.15, we know directly that E[|B|] ≤ O(n/∆0.25). Since yv ≤ 1 for any vertex v,

we have E[
∑

v∈B yv] ≤ E[|B|] ≤ O(n/∆0.25).

Now, for any fixed v ∈ V , we compute the probability of the event that v ∈ L and

yv = 1 (respectively, v ∈ H and yv = 1); we show that each event has probability O(∆−0.03).

Good vertices of type L. Recall that degres
M (v) ≤ Zv,1 + . . .+Zv,k where k = ∆0.1 denotes

the number of partitions. Taking expectations we get

E[degres
M (v) | π, L] ≤ E[Zv,1 + . . .+ Zv,k | π, L] = kE[Zv,1 | π, L]

where the latter equality for symmetry of the partitions. If v ∈ L, then E[Zv,1 | π, L] <

τ , thus, E[degres
M (v) | π, L] ≤ kτ = ∆0.1 · 2∆0.86 = 2∆0.96. By Markov’s inequality,

Pr[degres
M (v) > ∆0.99 | π, L] < O(∆−0.03). Therefore, Pr[yv = 1 ∧ v ∈ L | π, L] ≤ O(∆−0.03).

Integrating over π, L also Pr[yv = 1 ∧ v ∈ L] ≤ O(∆−0.03) as desired.

Good vertices of type H. We show that good vertices of type H are highly likely to be

matched in their own partition and thus not too many of them will remain in the graph. For

39

such a vertex v, one of the following two events must occur: either Z ′v ≥ ∆0.86 or Z ′v < ∆0.86.

The first of these events has probability exp(−poly(∆)) � ∆−0.03 by Claim 4.9. We next

need to bound the probability of having v ∈ H and also having Z ′v ≤ ∆0.86. If this occurs,

by definition of Z ′v, we have at least one index j ∈ [k] with Zv,j < ∆0.86. We bound the

occurrence probability of this event.

Since v ∈ H, by definition it is a good vertex and thus Claim 4.16 shows that Var(Zv,i |

π, L) ≤ O(∆1.4). Also, E[Zv,i | π, L] ≥ 2∆0.86. Therefore, by Chebyshev’s inequality, for any

fixed i ∈ [k],

Pr
[
Zv,i < ∆0.86 | π, L

]
≤ Pr

[∣∣Zv,i −E[Zv,i | π, L]
∣∣ ≥ 2∆0.86 −∆0.86

]
≤ O

(
Var(Zv,i | π, L)

(∆0.86)2

)
≤ O

(
∆1.4

∆1.72

)
≤ O(∆−0.32).

By a union bound over the k = ∆0.1 choices of j, we have

Pr
[
v ∈ H and there exists some j ∈ [k] with Zv,j ≤ ∆0.86 | π, L

]
≤ O(∆−0.22).

This means that the probability that yv = 1 and v ∈ H is O(∆−0.22)� O(∆−0.03).

4.4 Putting Everything Together

We now prove Lemma 4.6, showing that Algorithm 5 can be used to reduce the overall graph

degree. There are two parts to doing this. First, we need to amplify the success probability

of Lemma 4.7, which only showed a degree reduction in expectation, into one holding w.e.h.p.

Next, we need to remove the remaining high-degree vertices.

Claim 4.17. There is an algorithm to generate a matching M which w.e.h.p. uses n/∆Ω(1)

space per machine and O(m) total space, such that there are at most n/∆0.02 vertices v with

degresM (v) > ∆0.99.

Proof. We may assume that the original graph has as least n/∆0.02 vertices with deg(v) >

∆0.99, as otherwise there is nothing to do. This implies that m ≥ n∆0.97.

Now consider running Algorithm 5 to generate a matching M . Let us define Y to be the

number of vertices v ∈ V with degres
M (v) > ∆0.99. Line 5 has shown that E[Y] ≤ O(n/∆0.03),

and so we need to show concentration for Y . There are two cases depending on ∆.

Case 1: ∆ > n0.1. In this case, Markov’s inequality applied to Y shows that Pr[Y >

n∆−0.02] ≤ O(∆−0.01) ≤ 1/2. Now consider running t = na parallel iterations of Algorithm 5

40

for some constant a > 0, generating matchings M1, . . . ,Mt. Since they are independent,

there is a probability of at least 1− 2−t that at least one matching Mi has the property that

its residual set of high-degree vertices satisfies Y > n∆−0.02. Thus, w.e.h.p., this algorithm

satisfies the condition on the high-degree vertices. Each application of Algorithm 5 separately

uses O(n)+m/poly(∆) space. Therefore, the t iterations in total use O(n1+a)+nam/poly(∆)

space. Since ∆ > n0.1 and m ≥ ∆n0.97 > n1.07, this is O(m) for a a sufficiently small constant.

Case 2: ∆ < n0.1. We can regard Y as being determined by O(n∆) random variables,

namely, the values ρ, χ, L. By Lemma 3.5, modifying each entry of ρ, χ, or L can only change

the match-status of at most O(1) vertices. Each of these, in turn, has only ∆ neighbors,

which are the only vertices whose degree in G[V \M] is changed. Thus, changing each of

the underlying random variables can only change Y by O(∆). By Corollary 2.4, therefore,

w.e.h.p. we have

Y ≤ E[Y] +O(∆)n0.01
√
n∆ ≤ O(n∆−0.03) +O(n0.51∆1.5).

As ∆ ≤ n0.1 and ∆ is larger than any needed constants, this is at most n∆−0.02. Therefore,

already a single application of Algorithm 5 suceeds w.e.h.p.

Having slightly reduced the number of high-degree vertices, we next use the following

Algorithm 7, which significantly decreases the number of high-degree vertices.

Algorithm 7:

1 Let Y be the set of vertices in G[V \M] with degree greater than τ = ∆0.999.
2 Sample each edge with at least one end-point in Y with probability q := ∆−0.99 and let

L be the set of sampled edges.
3 Put GL = (V,L) in machine 1, choose an arbitrary permutation π over its edges and

return matching M ′ := GMM(GL, π).

Claim 4.18. Given a graph G, suppose we apply Claim 4.17; let M be the resulting matching

and G′ = G[V \M]. Suppose we next run Algorithm 7 on G′ and let M ′ denote the resulting

matching. Let Y ′ denote the set of vertices v with degresM∪M ′(v) > τ . Then, w.e.h.p., |Y ′| ≤

n/∆1.01.

Proof. Let Y be the set of vertices with degres
M (v) > τ and Y = |Y|. By Claim 4.17, w.e.h.p.

Y ≤ n/∆0.02. For the remainder of this proof, we assume that M (and hence Y) is fixed and

it satisfies this bound.

We first analyze E[Y ′] where we define Y ′ = |Y ′|. Consider some vertex v ∈ Y.

By the sparsification property of RGMM, with probability at least 1 − β the vertex v has

41

degres
M∪M ′ ≤ O(log 1/β

q). Setting β = e−∆0.001
, we get that degres

M∪M ′(v) ≤ O(∆0.991) with

probability 1− exp(−∆Ω(1)). Since this holds for any vertex v ∈ Y, we have shown that

E[Y ′] ≤ Y · exp(−∆Ω(1)) ≤ ne−∆Ω(1)
.

We next need to show concentration for Y ′. For this, note that if ∆ > n0.01, then the above

bound on E[Y ′] already implies (by Markov’s inequality) that Y ′ < 1 w.e.h.p.

If ∆ < n0.01, then we use the bounded differences inequality. Here, Y ′ can be regarded

as a function of n∆ random variables (the membership of each edge in L). By Lemma 3.5,

each such edge can affect the match-status of O(1) vertices. Each such vertex w, in turn, can

only change the membership in Y ′ of its neighbors. Hence, each random variable changes Y ′

by at most O(∆). By Corollary 2.4, we therefore have w.h.p.

Y ′ ≤ E[Y ′] +O(∆×
√
n∆× n0.01) ≤ n exp(−∆Ω(1)) +O(∆1.5n0.51).

By our assumption that ∆ ≤ n0.01, this is easily seen to be smaller than n/∆1.01.

Proof of Lemma 4.6. When we apply Claim 4.17 and then apply Claim 4.18, this w.e.h.p.

gives matchings M,M ′ respectively such that G[V \ (M ∪M ′)] has at most n/∆1.01 vertices

of degree larger than ∆0.999. Claim 4.17 already obeys the stated space bounds. For Algo-

rithm 7, observe that |Y| ≤ n/∆0.02, and so there are at most n∆0.98 edges incident to Y.

This means E[|L|] ≤ n/∆0.01 and a simple Chernoff bound thus shows that L ≤ n/∆Ω(1)

w.e.h.p. Finally, we place all vertices with degree at least ∆0.999 and their incident edges

onto a single machine; this clearly takes O(n/∆0.01) space. Since ∆ is larger than any needed

constant, this is at most n/∆Ω(1). We thus expand M ∪M ′ to a maximal matching M ′′ of

G[V \ (M ∪M ′)]. At the end of this process, all remaining vertices of G must have degree

less than ∆0.999.

4.5 Maximal Matching for Bounded Arboricity Graphs

In this section, we overview the key ideas behind the proof of Theorem 4.2.

The insufficiency of space to store all the vertices in one machine in the strictly sublinear

regime of MPC imposes challenges similar to those faced by algorithms in the LOCAL [140]

model: There is one processor on each of the nodes of the input graph and two processors can

communicate in each round if and only if there is an edge between their corresponding vertices.

The fact that the vertices, in the strictly sublinear regime of MPC, have to make decisions

42

(such as joining the MIS) based solely on a small neighborhood that they observe around

them, makes the algorithmic challenges of the two models similar. We need to keep in mind,

however, that the constraints that impose such locality in the two models are fundamentally

different. Roughly, in LOCAL, the radius that a vertex sees around is small but in MPC, it is

the size of this subgraph that is restricted to be sublinear.

However, a key difference between the two models that makes us hope for faster MPC

algorithms is the possibility of all-to-all communications. To illustrate this over a simple

example, consider a directed path (v1, v2, . . . , vd). It is not hard to see that in the LOCAL

model, it takes at least d − 1 rounds for v1 to send one bit of message to vd. However,

thanks to all-to-all communications, it can be done in only O(log d) rounds of MPC using the

well-known pointer jumping technique: Initially, for any i < d, set p(vi) := vi+1 and in each

round update it to be p(vi)← p(p(vi)). In only O(log d) rounds p(v1) will point to vd. This

is possible since vertex vi can directly communicate with vertex u = p(vi) and ask for the

value of p(u). Achieving such exponential improvements, however, is typically much more

intricate for other problems due to the space restrictions of MPC.

To further demonstrate the relevance of the above graph exponentiation idea to our

problems, we recall a beautiful (and well-known) property of LOCAL algorithms. In any

r-round LOCAL algorithm, the final state of each node/edge is merely a function of its r-hop

(i.e., the nodes/edges that are at distance at most r). This has been extensively used in

the literature to prove lower bounds, but has also given rise to a few algorithmic ideas (see

e.g., [138, 7] and the follow-up work or [91]). Combined with the O(log n) round LOCAL

algorithm of Luby [126] for MIS, or that of Israeli and Itai [104] for maximal matching, this

property implies that if in MPC, we manage to collect the O(log n)-hop of each vertex in

a machine responsible for it, we can locally simulate these algorithms without any further

communications.2 Using the graph exponentiation idea, we hope to be able to do this in

much faster than O(log n) rounds. There are however two fundamental barriers for this:

Local memory barrier. The O(log n)-hop of a vertex may be as large as Ω(m), exceeding the

local space of a machine. Even the 1-hop of a vertex with degree higher than ω(nδ)

cannot be stored in one machine.

Global memory barrier. Storing the neighborhood of each vertex on its corresponding ma-

chine leads to multiple copies of each vertex and thus a total aggregated memory of

2We note that since these algorithms are randomized, one also needs to collect the tape of random bits of

each vertex as well so that the results computed on different machines are compatible.

43

significantly larger than the input size, m.

Let us forget the global memory barrier for now and focus on handling the local memory

problem. We can safely assume for t = δ log∆ n, that the t-hop of every vertex fits the memory

of one machine since ∆δ log∆ n = nδ. This implies that we can indeed simulate t rounds of a

LOCAL algorithm in one round if we first collect the t-hops (which can be done in O(log t)

rounds). However, t is usually smaller than the actual number of rounds that the algorithm

takes. A way to overcome this is to share the states. That is, having the state of each vertex

by the end of round t, we can share these states with all other machines in one round of

communication and simulate the next t rounds of the algorithm to obtain the states by round

2t. We can repeat this to simulate r rounds of our LOCAL algorithm in O(r/t+log t) rounds.

Note that for this idea to work, the states of the LOCAL algorithm have to be crucially small

so that they can be shared and stored on the machines. However, even incorporating this

simulation does not help when the maximum degree is large. For instance, when ∆ = Ω(nδ),

even the direct neighbors of a vertex may not fit the memory of a single machine.

To convey the main intuitions, let us assume that the arboricity of the input graph is

O(1). We borrow a subroutine first introduced by Barenboim, Elkin, Pettie, and Schneider

[20, Theorem 7.2] for the LOCAL model and use it in our simulation. This algorithm, with

slight modifications, guarantees that for any τ ≥ logO(1) n (that is also sufficiently larger than

arboricity,) one can reduce the maximum degree to τ in O(logτ n) rounds by committing a

subset of edges (or vertices) to the maximal matching (or MIS).3 Call a vertex v high-degree if

deg(v) > τ and low-degree otherwise. This round complexity is achieved since the algorithm

removes τΩ(1) fraction of high-degree vertices in each round by matching them to their low-

degree neighbors (or by adding their low-degree neighbors to MIS). The algorithm turns

out to be very simple to implement and intuitive. For instance for maximal matching, in

each round, after discarding a subset of edges, each low-degree vertex proposes to one of its

high-degree neighbors uniformly at random and then each high-degree vertex gets matched

to one of its proposing neighbors (if any) arbitrarily. The intuition behind the analysis of

this subroutine is roughly as follows: Fix a high-degree vertex v and suppose it is likely to

survive ` rounds and remain high-degree. For this to happen, not only almost all neighbors

of v have to be high-degree, but the neighbors of its neighbors should also be high-degree

and this should continue for roughly ` levels. Due to the small arboricity of the graph, these

high-degree vertices cannot be highly inter-connected (otherwise we have a dense subgraph)

3Since we assume that arboricity is constant in this section, we have hidden the actual dependence of the

running time on the arboricity.

44

and thus each level requires τΩ(1) additional nodes. Therefore, ` cannot exceed O(logτ n).

Now we can use this subroutine as follows in the MPC model. Let ∆ be the current

maximum degree in the graph and let τ =
√

∆. The algorithm of [20] then takesO(log√∆ n) =

O(log∆ n) rounds to reduce the maximum degree polynomially to
√

∆ in the LOCAL model.

Simulating it with the graph exponentiation technique discussed above, this can be done in

O(log log n) rounds of MPC. Since each of these simulations reduces the current maximum

degree polynomially, repeating it for O(log log n) phases can be shown to reduce the maximum

degree to a constant where the problem becomes trivial to solve using known algorithms.

Hence, the overall round complexity would be O(log2 log n). In case the graph has a super-

constant arboricity, this idea can be used to reduce the maximum degree in O(log2 log n)

rounds to poly(λ) and at that point we can switch to the algorithm of [92] to solve the

remaining low degree graph in Õ(
√

log λ) rounds.

Optimizing the global memory. The challenge in optimizing the global memory is due

to the simulation step. Recall that in the simulation algorithm, we allocate O(nδ) space to

each vertex. Hence, we inevitably need Ω(m + n1+δ) total space instead of O(m). It does

not seem possible to give a general simulation algorithm that avoids the n1+δ additive term

in the total space. The algorithm of [20], however, can be simulated more efficiently since

roughly speaking the algorithm “ignores” low-degree vertices in a large number of rounds

and so we do not need to collect their neighbors.

See [37] and [35] for more details about this simulation technique and the bound of

Theorem 4.2.

45

Chapter 5

Massively Parallel Graph Connectivity

Identifying the connected components of a graph is a fundamental problem that has been

studied in a variety of settings (see e.g. [2, 88, 74, 146, 151, 142] and the references therein).

This problem is also of great practical importance [145] with a wide range of applications,

e.g. in clustering [142]. In this chapter, we study this problem in the Massively Parallel

Computations (MPC) model.

As before, we use S and M to respectively denote the space per machine and the

number of machines. We also that we use n and m to respectively denote the number of

vertices and edges in the input graph G = (V,E). Our focus in this chapter is particularly

on the strictly sublinear regime of MPC. Namely, we assume that the space per machine is

S = nδ for some constant δ ∈ (0, 1) that can be made arbitrarily small. Furthermore, we

assume that M · S = O(m) so that there is only enough total space to store the input. This

only leaves one parameter to optimize: the number of rounds.

Like many other graph problems, O(log n)-round MPC algorithms for graph connec-

tivity have been known for a long time. On the negative side, a widely believed conjecture

[153, 143, 118, 18] implies that this is the best possible in the strictly sublinear MPC:

Conjecture 5.1 (1v2-Cycle Conjecture). Distinguishing whether the input is a cycle on n

vertices or two cycles on n/2 vertices with n1−Ω(1) space per machine and poly(n) total space

requires Ω(log n) rounds.

The 1v2-Cycle conjecture and the matching upper bound, however, are far from

explaining the true complexity of the problem. First, the hard example used in the conjecture

is very different from what most graphs look like. Second, the empirical performance of the

existing algorithms (in terms of the number of rounds) is much lower than what the upper

bound of O(log n) suggests [112, 118, 149, 142, 127]. This disconnect between theory and

46

practice has motivated the study of graph connectivity as a function of diameter D of the

graph. The reason is that the vast majority of real-world graphs, indeed have very low

diameter [121, 73]. This is reflected in multiple theoretical models designed to capture real-

world graphs, which yield graphs with polylogarithmic diameter [61, 99, 125, 62].

Our main contribution in this chapter is the following algorithm:

Theorem 5.2 (main result). There is a strongly sublinear MPC algorithm with O(m) total

space that given a graph with diameter D, identifies its connected components in O(logD+

log logm/n n) rounds. The algorithm is randomized, succeeds with high probability, and does

not require prior knowledge of D.

Note that for the wide range of values D = logΩ(1) n, the algorithm of Theorem 5.2

takes O(logD) rounds which can be shown to be optimal under Conjecture 5.1. Moreover,

when D is not in this range the algorithm takes only O(log log n) rounds.

Related Work

Theorem 5.2 improves over a previous algorithm of Andoni, Song, Stein, Wang, and Zhong [9]

that takes O(logD · log logm/n n) rounds. Note that the algorithm of [9] matches the Ω(logD)

lower bound for a very specific case: if the graph is extremely dense, i.e., m = n1+Ω(1). In

practice, this is usually not the case [71, 121, 86]. In fact, it is worth noting that the main

motivation behind the MPC model with sublinear in n space per machine is the case of sparse

graphs [109]. We also note that for the particularly important case when D = poly log n,

the algorithm of Theorem 5.2 requires only O(log log n) rounds which quadratically improves

upon a bound of O(log2 log n) rounds, which follows from the result of [9]. Theorem 5.2

also provides a number of other qualitative advantages. For instance it succeeds with high

probability as opposed to the constant success probability of [9]. Furthermore, the running

time required for identifying each connected component depends on its own diameter only.

The diameter D in the result of [9] is crucially the largest diameter.

We note that another algorithm by Assadi, Sun, and Weinstein [18] implies an O(log 1
λ+

log log n) round algorithm for graphs with Õ(n) edges that have spectral gap at least λ. By

a well-known bound, D = O(logn
λ). Therefore, our algorithm requires O(logD + log log n) =

O(log(logn
λ) + log log n) = O(log 1

λ + log log n) rounds for graphs with spectral gap at least

λ. As a result, the running time bound of our algorithm is never worse than the bound due

to Assadi et al. However, as shown in [9], there are graphs with 1
λ ≥ D · nΩ(1) making our

47

algorithm more general.

Recent Developments

After the first publication of the result of this chapter in [41], Liu, Tarjan, and Zhong [123]

showed that the same algorithm can also be efficiently implemented in the PRAM model,

leading to an O(logD+log log n)-round algorithm for graph connectivity. Moreover, Coy and

Czumaj [72] showed that the algorithm can be efficiently derandomized, essentially achieving

all the guarantees of Theorem 5.2 deterministically.

5.1 High-Level Overview of Techniques

Recall that we assume the regime of MPC with strictly sublinear space of nδ with δ being a

constant in (0, 1). This local space, roughly speaking, is usually not sufficient for computing

any meaningful global property of the graph within a machine. As such, most algorithms in

this regime proceed by performing local operations such as contracting edges/vertices, adding

edges, etc. Note that even the direct neighbors of a high-degree vertex may not fit in the

memory of a single machine, however, using standard techniques most basic local operations

can be implemented in O(1/δ) = O(1) rounds of MPC. Intuitively, if the degree of a vertex v

is larger than nδ, one can construct a “virtual” nδ-ary regular tree of depth O(1/δ) out of v

whose leaves correspond to the original neighbors of v. This way, the (virtual) degree of every

vertex is bounded by O(nδ) and fits the memory. Additionally the distance of each vertex

to its original neighbors is at most O(1/δ). For the purpose of this section, however, we do

not get into such technicalities and discuss the high level intuition behind the algorithm. We

start with a brief overview of some of the relevant techniques and results, then proceed to

describe the new ingredients of our algorithm and its analysis.

Graph exponentiation. Consider a simple algorithm (a similar variant of which was also

discussed in Section 4.5) that connects every vertex to vertices within its 2-hop (i.e., vertices

of distance 2) by adding edges. It is not hard to see that the distance between any two

vertices shrinks by a factor of 2. By repeating this procedure, each connected component

becomes a clique within O(logD) steps. The problem with this approach, however, is that the

total space required can be up to Ω(n2), which for sparse graphs is much larger than O(m).

Andoni, Song, Stein, Wang, and Zhong [9] managed to improve the total space to the optimal

bound of O(m), at the cost of increasing the round complexity to O(logD · log logm/n n). We

48

briefly overview this result below.

Overview of [9]. Suppose that every vertex has degree at least d � log n. Select each

vertex as a leader independently with probability Θ(log n/d). Then contract every non-leader

vertex to a leader neighbor (which w.h.p. exists). This shrinks the number of vertices from

n to Õ(n/d). As a result, the amount of space available per remaining vertex increases to

Ω̃(m
n/d) = Ω̃(ndn/d) ≈ d2. At this point, a variant of the aforementioned graph exponentiation

technique can be used to increase vertex degrees to d2 (but not more), which implies that

another application of leader contraction decreases the number of vertices by a factor of Ω(d2).

Since the available space per remaining vertex increases doubly exponentially, O(log log n)

phases of leader contraction suffice to increase it to n. Moreover, each phase requires O(logD)

iterations of graph exponentiation, thus the round complexity is O(logD log logn).

5.1.1 Our Connectivity Algorithm: The Roadmap

The main shortcoming of Andoni et al.’s algorithm is that within a phase, where the goal is

to increase the degree of every vertex to d, those vertices that have already reached degree

d are stalled (i.e., do not connect to their 2-hops) until all other vertices reach this degree.

Because of the stalled vertices, the only guaranteed outcome of the graph exponentiation

operation is increasing vertex degrees. In particular, the diameter of the graph may remain

unchanged. This is precisely why their algorithm may require up to O(logD · log logn)

applications of graph exponentiation. We note that this is not a shortcoming of their analysis.

Indeed, we remark that there are family of graphs on which Andoni et al.’s algorithm takes

Θ(logD · log logn) rounds.

Instead of describing our algorithm, we focus in this section on some of the properties

that we expect it to satisfy, and how they suffice to get our desired round complexity. This

overview should be helpful when reading the description of the algorithm in Section 5.2.1.

Our algorithm assigns budgets to vertices. Intuitively, a budget controls how much space

a vertex can use, i.e., how much it can increase its degree. To bound the space complexity,

we will bound the sum of all vertex budgets. In our algorithm vertices may have different

budgets (differently from the algorithm of Andoni et al.). This allows us to prevent the

vertices from getting stalled behind each other. Overall, we have L = Θ(log log n) possible

budgets β0, β1, . . . , βL where β0 = O(1), βL = Ω(n), and βi = (βi−1)1.25. We say a vertex v is

at level `(v) = i, if its budget b(v) equals βi. The algorithm executes a single loop until each

connected component becomes a clique. We call a single execution of this loop an iteration

49

which can be implemented in O(1) rounds.

Property 1 (see Lemma 5.9). For any two vertices u and v at distance exactly 2 at the

beginning of an iteration of the algorithm, after the next 4 iterations, either their distance

decreases to 1, or the level of both vertices increases by at least one.

We call every 4 iterations of the algorithm a super-iteration. Property 1 guarantees

that if a vertex does not get connected to every vertex in its 2-hop within a super-iteration,

its level must increase.1 Recall, on the other hand, that the maximum level of any vertex is at

most O(log log n). As such, every vertex resists getting connected to those in its 2-hop for at

most O(log log n) super-iterations. However, somewhat counter-intuitively, this observation

is (provably) not sufficient to guarantee an upper bound of O(logD+ log log n) rounds. Our

main tool in resolving this, is maintaining another property.

Property 2 (see Observation 5.7). If a vertex v is neighbor of a vertex u with `(u) > `(v),

then by the end of the next iteration, the level of v becomes at least `(u).

The precise proof of sufficiency of Properties 1 and 2 is out of the scope of this section.

Nonetheless, we provide a proof sketch with the hope to make the actual arguments easier

to understand. See Lemma 5.12 for the formal statement and its proof.

Proof sketch of round complexity. Fix two vertices u and v in one connected component of

the original graph and let P1 be the shortest path between them. As the vertices connect to

their 2-hops and get closer to each other, we drop some of the vertices of P1 while ensuring

that the result is also a valid path from u to v. That is, we maintain a path Pi by the end of

each super-iteration i which is obtained by replacing some subpaths of Pi−1 of length at least

two by single edges. We say that the interior vertices of the replaced subpaths are dropped.

Our goal is to show that for R := O(logD + log log n), path PR has O(1) length,

thus dropping the diameter of the whole graph to O(1) which is trivially solved in O(1)

rounds by our algorithm. To show this, we require a potential-based argument. Suppose

that we initially put one coin on every vertex of P1, thus we have at most D + 1 coins.

Let Pi = (u1, . . . , uj , . . . , uk) be the path at the end of super-round i. As we construct

Pi+1 from Pi, any vertex uj that is dropped from Pi, passes its coins evenly to vertices in

{uj−2, uj−1, uj+1, uj+2} that exist and survive to Pi+1 (if none of them survive the coins are

discarded). Moreover, we construct Pi+1 from Pi such that it satisfies the following property,

1In this section, for simplicity and to convey the main intuitions, we ignore the changes to the graph’s

structure caused by vertices being merged together.

50

which we call invariant 1: If the level of a vertex uj ∈ Pi within super-iteration i+ 1 does not

increase, there is a vertex in {uj−2, uj−1, uj , uj+1, uj+2} that is dropped. This is guaranteed

to be possible due to Property 1: Observe that at least one of uj−2 and uj+2 should belong to

Pi otherwise the path has length ≤ 2 and is already small. Let us suppose w.l.o.g. that uj−2

exists. Now if either of uj−2 or uj is dropped from Pi the condition is satisfied, otherwise by

Property 1, uj−2 and uj should be directly connected after super-iteration i + 1 and and it

is thus safe to drop uj−1 and ensure Pi+1 remains to be a path.

Finally, we use Property 2 to prove invariant 2: In any path Pi, every vertex of level

j has at least (1.25)i−j coins. That is, we have more coins on the vertices that have lower

levels. Note that this is sufficient to prove the round complexity. For, otherwise, if |PR| > 2,

due to the fact that the level of every vertex is at most O(log log n), there should remain a

vertex in PR with at least

(1.25)R−j ≥ (1.25)Θ(logD+log logn)−O(log logn) ≥ (1.25)4 logD � D + 1

coins, while we had only D + 1 coins in total. Property 2 is useful in the proof of invariant

2 in the following sense: If a low-level vertex w ∈ Pi survives to Pi+1 without increasing its

level, its dropped 2-hop neighbor (which exists by invariant 1) cannot have a higher level

than w by Property 2 (since their distance is at most two and a super-iteration includes four

iterations), and thus passes enough coins to w.

5.2 Main Algorithm: Connectivity with O(m) + Õ(n) Total Space

In this section, we describe an O(logD+log logT/n n) round connectivity algorithm assuming

that the total available space is T ≥ m + n logα n where α is some desirably large constant.

We later show how to improve the total space to the optimal bound of O(m) in Section 5.3.

We start with description of the algorithm in Section 5.2.1 and proceed to its analysis in

Sections 5.2.2 to 5.2.4.

5.2.1 The Algorithm

The algorithm consists of a number of iterations, each of which calls three subroutines named

Connect2Hops, RelabelInterLevel, and RelabelIntraLevel.2 Each iteration will be implemented

in O(1) rounds of MPC and we later show that O(logD+log logT/n n) iterations are sufficient.

2The relabeling subroutines are close to the leader contraction operation we discussed in Section 5.1.

However, we use a different terminology to emphasize the difference in handling chains. See Figure 5.1.

51

We first formalize the overall structure of the algorithm as Algorithm 1, then continue to

describe the subroutines of each iteration one by one.

Algorithm 1. FindConnectedComponents(G(V,E))

1. To any vertex v, we assign a level `(v) ← 0, a budget b(v) ← (Tn)1/2, and a set C(v) ←
{v} which throughout the algorithm, denotes the set of vertices that v corresponds to.
Moreover, every vertex v is initially marked as active and we set next(v)← v.

2. Repeat the following steps until each remaining connected components becomes a clique:

(a) Connect2Hops(G, b, `)

(b) RelabelInterLevel(G, b, `, C,next)

(c) RelabelIntraLevel(G, b, `, C)

3. For every remaining connected component C corresponds to one of the connected com-
ponents of the original graph whose vertex set is ∪v∈CC(v).

Connect2Hops(G, b, `)

For every active vertex v:

1. Define H(v) := {u | ∃w s.t. w ∈ N(u) ∩N(v), `(u) = `(w) = `(v)}.
2. Let dv be the number of vertices currently connected to v that have level at least `(v).

Pick min{b(v)− dv, |H(v)|} arbitrary vertices in H(v) and connect them to v.

RelabelInterLevel(G, b, `, C,next)

1. For every (active or inactive) vertex v:

(a) Let h(v) be the neighbor of v with the highest level with ties broken arbitrarily.
(b) If `(h(v)) > `(v), mark v as inactive and set next(v)← h(v).

2. Replace every edge {u, v} in the graph with {next(u),next(v)}.
3. Remove duplicate edges and self-loops.

4. For every vertex v, set I(v)← ∪u:next(u)=vC(u).

5. For every vertex v, if v is active, set C(v)← C(v) ∪ I(v) and if v is inactive set C(v)←
I(v).

6. If an inactive vertex has become isolated, remove it from the graph.

52

c d e

v1

a b c d ea b

v2 v3 v2 v3

next(v1)=v2 next(v2)=v3 next(v2)=v3

c d ea b

v3

Figure 5.1: Algorithm 1 does not traverse “relabeling chains”. In the first iteration, vertex v1 is
relabeled to v2 and v2 is relabeled to v3. After two iterations, both v1 and v2 are contracted to v3.
Note that the edge {v2, v3} of iteration 1 will become a self-loop after applying the relabeling v2 → v3
and thus will be removed. However, the edge {v2, v3} that still remains in the second iteration is the
result of applying relabelings v1 → v2 and v2 → v3 on edge {v1, v2}.

RelabelIntraLevel(G, b, `, C)

1. Mark an active vertex v as “saturated” if it has more than b(v) active neighbors that
have the same level as v.

2. If an active vertex v has a neighbor u with `(u) = `(v) that is marked as saturated, v is
also marked as saturated.

3. Mark every saturated vertex v as a “leader” independently with probability
min{3 logn

b(v) , 1}.
4. For every leader vertex v, set `(v)← `(v) + 1 and b(v)← b(v)1.25.

5. Every non-leader saturated vertex v that sees a leader vertex u of the same level (i.e.,
`(u) = `(v)) in its 2-hop (i.e., dist(v, u) ≤ 2), chooses one as its leader arbitrarily.

6. Every vertex is contracted to its leader. That is, for any vertex v with leader u, every
edge {v, w} will be replaced with an edge {u,w} and all vertices in set C(v) will be
removed and added to set C(u). We then remove vertex v from the graph.

7. Remove duplicate edges or self-loops and remove saturated/leader flags from the vertices.

Within the Connect2Hops subroutine, every active vertex v attempts to connect itself

to a subset of the vertices in its 2-hop. If there are more candidates than the budget of v

allows, we discard some of them arbitrarily. To formalize this, we use N(u) to denote the

neighbors of a vertex u.

Next, in the RelabelInterLevel subroutine, every vertex v that sees a vertex u of a higher

level in its neighborhood, is “relabeled” to that vertex. That is, any occurrence of v in the

edges is replaced with u. As a technical point, it might happen that we end up with a chain

v1 → v2 → v3 → . . . of relabelings where vertex v1 has to be relabeled to v2, v2 has to

be relabeled to v3, and so on. In each iteration of the algorithm, we only apply the direct

relabeling of every vertex, that is v1 ends up with label v2, v2 ends up with label v3, etc. An

example of this is illustrated in Figure 5.1.

Finally, the last subroutine RelabelIntraLevel, is where we increase the budgets/levels.

53

5.2.2 Analysis of Algorithm 1 – Correctness

Correctness. We first show that the algorithm indeed computes the connected components

of the given graph. The following lemma follows directly from the fact that Algorithm 1 does

not split or merge connected components.

Lemma 5.3. Let S1, . . . ,Sk be the connected components of G at the end of Algorithm 1.

Then, the family of sets {∪v∈SiC(v) | i ∈ [k]} is equal to the family of vertex sets of connected

components of the original graph.

Proof. We use induction to show that the claim is true at the end of each iteration r of

Algorithm 1. Before we start the algorithm, i.e., when r = 0, for every vertex v we have

C(v) = {v}. Therefore, clearly the base case holds. For the rest of the proof, it suffices to

show that the three steps of Connect2Hops, RelabelInterLevel, and RelabelIntraLevel maintain

this property.

Within the Connect2Hops subroutine, we only add edges to the graph. The only way

that this operation may hurt our desired property, is if the added edges connect two different

connected components of the previous iteration. However, every added edge is between two

vertices of distance at most 2 (and thus in the same component) implying that this cannot

happen.

For the RelabelInterLevel subroutine, we first have to argue that the relabelings do not

change the connectivity structure of the graph. It is clear that two disconnected compo-

nents cannot become connected since each vertex is relabeled to another vertex of the same

connected component. Moreover, we have to argue that one connected component does not

become disconnected. For this, consider a path between two vertices u and v of the same

component. After relabeling vertices, there is still a walk between the corresponding vertices

to u and v, thus they remain connected. Finally, observe that once a vertex v is relabeled to

some vertex u, in Line 5 of the RelabelInterLevel subroutine, we add every vertex of C(v) to

C(u). This ensures that for every component S, the set ∪v∈SC(v) does not lose any vertex

and thus remains unchanged.

Similarly, in the RelabelIntraLevel step, the vertices only get contracted to the leaders

in their 2-hop and once removed from the graph, a vertex v passes every element in C(v) to

C(u) of another vertex u in its component, thus the property is maintained.

54

5.2.3 Analysis of Algorithm 1 – Round Complexity

In order to pave the way for future discussions, we start with some definitions. We use Gr =

(Vr, Er) to denote the resulting graph by the end of iteration r of Algorithm 1. Therefore,

we have V = V0 ⊇ V1 ⊇ V2 ⊇ . . . as we do not add any vertices to the graph. Moreover, for

any vertex v ∈ V and any iteration r ≥ 0, we define nextr(v) to be the vertex w ∈ Vr such

that v ∈ C(w) by the end of iteration r. That is, nextr(v) is the vertex that corresponds to

v by the end of iteration r.

Observation 5.4. Let v ∈ Vr be an active vertex. Then for any r′ ≤ r, we have nextr′(v) = v.

For any iteration r ≥ 0 and any vertex v ∈ V , we respectively use `r(v), br(v) and

Cr(v) to denote the value of `(nextr(v)), b(nextr(v)) and C(nextr(v)) by the end of iteration

r. Furthermore, for any two vertices v, u ∈ V , we use distr(u, v) to denote the length of the

shortest path between nextr(u) and nextr(v) in graph Gr.

The following claim implies that the corresponding level of a vertex is non-decreasing

over time.

Claim 5.5. For any vertex v ∈ V and any r ≥ r′, we have `r(v) ≥ `r′(v).

Proof. We use induction on r. For the base case with r = r′, we clearly have `r(v) = `r′(v).

Suppose, by the induction hypothesis, that `r−1(v) ≥ `r′(v). If in iteration r of the algorithm,

vertex nextr−1(v) is not relabeled, i.e., if we have nextr(v) = nextr−1(v), then `r(v) = `r−1(v)

by definition and the fact that the level of a particular vertex cannot decrease in one iteration.

Therefore, by the induction hypothesis, we have `r(v) = `r−1(v) ≥ `r′(v). On the other hand,

if vertex v is relabeled in iteration r, i.e., if nextr(v) 6= nextr−1(v), then it suffices to show

that it is relabeled to a vertex whose level is higher. This is clear from description of the

algorithm. A vertex that gets relabeled within the RelabelInterLevel subroutine, does so if and

only if the new vertex has a higher level. Similarly, in within the RelabelIntraLevel subroutine

of Algorithm 1, any vertex v that is contracted to another vertex does so if it is a marked

saturated vertex of the same level, whose level increases by the end of the iteration.

The next claim shows, in a similar way, that the distance between the corresponding

vertices of two vertices u and v is non-increasing over time.

Claim 5.6. For any two vertices v, u ∈ V and any r ≥ r′, distr(u, v) ≤ distr′(u, v).

55

Proof. Similar to the proof of Claim 5.5, we can show this by induction on r and, thus, the

problem reduces to showing that in one iteration the corresponding distance between two

vertices cannot increase. To show this, fix a shortest path p between two vertices v and u at

any iteration. Within the next iteration, the Connect2Hops subroutine does not affect this

path as it only adds some edges to the graph. Moreover, the only effect of the relabeling

steps on this path is that it may shrink it as one vertex of the path can be relabeled to one of

its neighbors in the path. However, relabeling can in no way destroy or increase the length

of this path. Thus, the lemma follows.

Our next observation follows directly from the description of the algorithm.

Observation 5.7. For any r ≥ 0 and any vertices u, v ∈ V with distr(u, v) ≤ 1, we have

`r+1(u) ≥ `r(v) and `r+1(v) ≥ `r(u).

Proof. This follows since any vertex who sees a neighbor of a higher level, is relabeled to its

neighbor with the highest level in subroutine RelabelInterLevel of Algorithm 1.

Claim 5.8. With high probability for any iteration r and any vertex v ∈ Vr, if v becomes

saturated in the next iteration r + 1, then there is at least one leader of the same level in its

2-hop, thus `r+1(v) ≥ `r(v) + 1.

Proof. If v is saturated, then by definition, it has at least b(v) vertices in its inclusive 2-hop

(i.e., the set v∪N(v)∪N(N(v))) that have the same level as that of v and are also saturated.

To see this, note that if v is marked as saturated in Line 1 of RelabelIntraLevel, then it has

at least b(v) other active direct neighbors with level at least b(v) all of which will be marked

as saturated in Line 2. Furthermore, if a vertex v is marked as saturated in Line 2, then it

has a saturated neighbor which has b(v) direct saturated neighbors as just described. Thus

v’s 2-hop will include b(v) saturated vertices as desired.

It suffices to show that one of these b(v) saturated vertices will be marked as a leader

with high probability. Recall that we mark each vertex independently with probability 3 logn
b(v) ,

thus

Pr
[
`r+1(v) = `r(v)

]
≤
(

1− 3 log n

b(v)

)b(v)
≤ exp(−3 log n) ≤ 1/n3.

By a union bound over all vertices, and over the total number of iterations of the algorithm

which is clearly less than n2, we get that with probability at least 1− 1/n every vertex that

gets saturated sees a marked vertex in its 2-hop and its corresponding level will thus be

increased in the next iteration.

56

The next lemma highlights a key property of the algorithm and will be our main tool in

analyzing the round complexity. Intuitively, it shows that with high probability, after every 4

iterations of Algorithm 1, every vertex v is either connected to its 2-hop, or its corresponding

level increases by at least 1.

Lemma 5.9. Let u, v ∈ V be two vertices with distr(u, v) = 2 for some iteration r. If

distr+4(u, v) ≥ 2, then `r+4(v) ≥ `r(v)+1 and `r+4(u) ≥ `r(u)+1. This holds for all vertices

u and v and over all iterations of the algorithm with high probability.

Proof. By Claim 5.6, we have distr+4(u, v) ≤ distr(u, v) = 2. As such, to prove the lemma, it

suffices to obtain a contradiction by assuming that distr+4(u, v) = 2 and (w.l.o.g.) `r+4(u) =

`r(u).

Recall that the lemma assumes that distr(u, v) = 2. Therefore, there must exist a

vertex w with distr(u,w) = distr(w, v) = 1. By an application of Observation 5.7, we have

`r+4(u) ≥ `r+3(w) ≥ `r+2(v) ≥ `r+1(w) ≥ `r(u).

Combining this with our assumption that `r+4(u) = `r(u), we get

`r+4(u) = `r+3(w) = `r+2(v) = `r+1(w) = `r(u). (5.1)

Moreover, by Claim 5.5 which states the levels are non-decreasing over time, we have

`r+4(u) ≥ `r+2(u) ≥ `r(u) and `r+3(w) ≥ `r+2(w) ≥ `r+1(w). (5.2)

Combination of (5.1) and (5.2) directly implies the following two useful inequalities.

Observation 5.10. `r+2(u) = `r+2(w) = `r+2(v).

Proof. Inequality `r+4(u) ≥ `r+2(u) ≥ `r(u) of (5.2) combined with equality `r+4(u) = `r(u)

of (5.1) implies `r+2(u) = `r(u). This combined with `r(u) = `r+2(v) of (5.1), gives `r+2(u) =

`r+2(v).

Inequality `r+3(w) ≥ `r+2(w) ≥ `r+1(w) of (5.2) combined with equality `r+3(w) =

`r+1(w) of (5.1) implies `r+2(w) = `r+1(w). Combined with `r+1(w) = `r+2(v) of (5.1), it

gives `r+2(w) = `r+2(v).

Observation 5.11. `r+4(u) = `r+2(u).

Proof. Inequality `r+4(u) = `r(u) due to (5.1) combined with inequality `r+4(u) ≥ `r+2(u) ≥

`r(u) of (5.2) implies `r+4(u) = `r+2(u) = `r(u).

57

Observation 5.10 implies that the corresponding levels of all three vertices u, w and v

should be the same at the end of iteration r+2. Thus, within the Connect2Hops subroutine of

iteration r + 3, we have nextr+2(v) ∈ H(nextr+2(u)); now either we connect nextr+2(u) and

nextr+2(v) which reduces their distance to 1 contradicting our assumption that distr+4(u, v) =

2, or otherwise vertex nextr+2(u) spends its budget to get connected to at least br+2(u) other

vertices of level at least `r+2(u). Let N be the set of these neighbors of nextr+2(u). There

are three scenarios and each leads to a contradiction:

• If for a vertex x ∈ N , `r+2(x) > `r+2(u), then by Observation 5.7, the level of the cor-

responding vertex of u increases in the next iteration and we have `r+4(u) ≥ `r+3(u) >

`r+2(u) which contradicts equality `r+4(u) = `r+2(u) of Observation 5.11.

• If a vertex x ∈ N is inactive, then x is in a chain by definition of inactive vertices.

Every vertex in a chain has a vertex of higher level next to it, thus `r+3(x) > `r+2(x)

by Observation 5.7. Furthermore, since x ∈ N , we know `r+2(x) ≥ `r+2(u). This

means that nextr+3(u) has a neighbor of strictly higher level, thus by Observation 5.7,

we have to have `r+4(u) > `r+2(u) which contradicts equality `r+4(u) = `r+2(u) of

Observation 5.11.

• If the two cases above do not hold, then after applying Connect2Hops in iteration r+ 2,

nextr+2(u) has at least br+2(u) active neighbors of level exactly `r+2(u). Furthermore,

vertex nextr+2(u) itself has to be active, or otherwise its corresponding level has to

increase in the next iteration which is a contradiction. This means by definition that

nextr+2(u) is saturated during iteration 3. By Claim 5.8, with high probability the

corresponding level of every saturated vertex increases by at least one in the next

iteration, and thus we get `r+3(u) > `r+2(u) which, again, would imply `r+4(u) 6=

`r+2(u) contradicting Observation 5.11.

To wrap up, we showed that if the distance between the corresponding vertices to u and v

after the next 4 iterations is not decreased to at most 1, then the corresponding level of u

and v has to go up by one with high probability.

As discussed before, Lemma 5.9 implies that after every O(1) consecutive iterations of

Algorithm 1, each vertex either is (roughly speaking) connected to the vertices in its 2-hop

or sees a level increase. It is easy to show that if every vertex is connected to the vertices in

its 2-hop, the diameter of the graph is reduced by a constant factor, and thus after O(logD)

iterations every connected component becomes a clique. Notice, however, that Lemma 5.9

58

does not guarantee this, as for some vertices, we may only have a level increase instead of con-

necting them to their 2-hop. Let L be an upper bound on the level of the vertices throughout

the algorithm. (We later show in Lemma 5.16 that L = O(log logT/n n).) Since the maximum

possible level is L, each vertex does not connect 2-hops for at most L iterations. Therefore,

if for instance, within each of the first L iterations of the algorithm, the corresponding level

of every vertex increases, we cannot have any level-increases afterwards. Therefore within

the next O(logD) iterations, each vertex connects 2-hops and every connected component

becomes a clique. Overall, this takes O(L + logD) iterations. In reality, however, the level

increases do not necessarily occur in bulk within the first L iterations of the algorithm. In

fact, Lemma 5.9 alone is not enough to show a guarantee of O(L + logD). To get around

this problem, we need to use another crucial property of the algorithm highlighted in Ob-

servation 5.7. A proof of sketch of how we combine these two properties to get our desired

bound was already given in Section 5.1. The following lemma formalizes this.

Lemma 5.12. Let L be an upper bound on the number of times that the corresponding level

of a vertex may increase throughout the algorithm. Only O(L + logD) iterations of the for

loop in Algorithm 1 suffices to make sure that with high probability, every remaining connected

component becomes a clique.

Proof. It will be convenient for the analysis to call every 4 consecutive iterations of the for-

loop in Algorithm 1 a super-iteration. That is, for any i ≥ 1, we define the ith super-iteration

to be the combination of performing iterations 4i− 3, 4i− 2, . . . , 4i of Algorithm 1.

Fix two arbitrary vertices u and v in a connected component of the original graph G.

It suffices to show that after running the algorithm for R := O(L + logD) super-iterations,

the corresponding vertices to u and v, are at distance at most 1. To show this, we maintain

a path between u and v and update it over time. We use Pr to denote the maintained path

by the end of super-iteration r, i.e., the path is updated every four iterations. The initial

path, P0, is any arbitrary shortest path between u and v in the original graph G; notice

that P0 has at most D + 1 vertices, as the diameter of G is D. As we move forward, u and

v may be relabeled; nonetheless, the path Pr will be a path from vertex next4r(u) (which

is the corresponding vertex to u by the end of iteration 4r or equivalently super-iteration

r) to vertex next4r(v). Crucially, the path Pr is not necessarily the shortest path between

next4r(v) and next4r(u) in Gr. The reason is that the naive shortest paths may “radically”

change from one iteration to another. Instead, we carefully construct Pr to ensure that it

passes only through the corresponding vertices of the vertices in Pr−1, which also inductively

59

indicates that every vertex in Pr is in set {next4r(w) |w ∈ P0}.

To use these gradual updates, for every r, we define a potential function Φr : V (Pr)→ N

that maps every vertex of path Pr to a positive integer. The definition of function Φr and

construction of path Pr are recursively based on Φr−1 and Pr−1. As for the base case, we

have Φ0(v) = 1 for every vertex v ∈ P0. For the rest of the iterations, we follow the following

steps.

To construct Pr from Pr−1, we first apply the relabelings of iterations 4r − 3, . . . , 4r,

on the vertices in Pr−1. That is, the sequence Pr−1 = (w1, . . . , ws) becomes Q = (q1, . . . , qs)

where qi = next4r(wi). Note that multiple vertices in Pr−1 may have been relabeled to the

same vertex throughout these four iterations, and thus the elements in Q are not necessarily

unique. Next, we use an s-bit mask vector K ∈ {0, 1}s to denote a subsequence3 of Q that

corresponds to the vertices in Pr. That is, Pr contains the ith element of Q if and only if

Ki = 1. To guarantee that Pr is indeed a path and that it has some other useful properties,

our mask vector K should satisfy the following properties:

(P1) K1 = Ks = 1.

(P2) If for some i, j ∈ [s] with i 6= j, we have qi = qj , then at most one of Ki and Kj is 1.

(P3) If for some 1 ≤ i < j ≤ s with Ki = Kj = 1, there is no k with i < k < j for which

Kk = 1, then qi and qj should have a direct edge in graph G4r.

(P4) If for some i ∈ [s], we have `4r(qi) = `4(r−1)(wi) (i.e., the level of the corresponding

vertex to wi is not increased) and Ki = 1, then at least one of Ki−2, Ki−1, Ki+1 or

Ki+1 should be 0.4

Property P1 guarantees that the path of the next iteration remains to be between the cor-

responding vertices to u and v. Property P2 ensures that we do not revisit any vertex in

Pr which is necessary if we want Pr to be a path. Property P3 ensures that every two

consecutive vertices in Pr are neighbors in G4r, which again, is necessary if we want Pr to

denote a path in G4r. Finally, Property P4 guarantees that if the corresponding level of

a vertex wi ∈ V4(r−1) does not increase in iterations 4r − 3, . . . , 4r, and that qi (which is

the corresponding vertex to wi after these four iterations) is included in path Pr, there is

a vertex in {wi−2, wi−1, wi+1, wi+2} whose corresponding vertex at the next iteration is not

3A subsequence is a derived from another sequence by deleting some or no elements of it without changing

the order of the remaining elements.
4K is an s-bit vector, but assume for preciseness of definition that K−1 = K0 = Ks+1 = Ks+2 = 1.

60

included in Pr. Note that we have to be careful that by satisfying Property P4, we do not

violate Property P3. In other words, we have to make sure that once we drop the (2-hop)

neighboring vertices of wi in Pr−1 from Pr, Pr remains to be a connected path. However, this

can be guaranteed by Lemma 5.9 which says if the corresponding level of a vertex does not

increase in 4 iterations, its distance to the vertices in its 2-hop decreases to at most 1 (see

also Section 5.1). Overall, we get the following result.

Claim 5.13. If q1 6= qs and if |Pr−1| > 3, then with high probability there exists a mask

vector K satisfying Properties P1-P4.

Construction of function Φr is also based on the mask vector K that we construct Pr

with. Recall that Φr is a function from the vertices in Pr to N. Therefore, in order to describe

Φr, it suffices to define the value of Φr on vertex qi iff Ki = 1. Assuming that Ki = 1, define

li to be the smallest number in [1, i] such that
∑i−1

j∈li Kj ≤ 1. In a similar way, define ri to

be the largest number in [i, s] where
∑ri

j=i+1Kj ≤ 1. Having these, we define Φr(qi) in the

following way:

Φr(qi) := Φr−1(wi) +
1

4

i−1∑
j=li

Φr−1(wj) +
1

4

ri∑
j=i+1

Φr−1(wj). (5.3)

The next two claims are the main properties of function Φr that we use in proving

Lemma 5.12.

Claim 5.14. For any r ≥ 0 and any vertex w ∈ Pr with level ` = `4r(w), Φr(w) ≥ (1.25)r−`.

Proof. We use induction on r. For the base case with r = 0, we have Φ0(w) = 1 and

since it is before the first iteration, we have ` = 0. Thus, we have Φ0(w) ≥ (1.25)0−0 = 1.

The induction hypothesis guarantees for every vertex w′ of path Pr−1 with level `′, that

Φr−1(w′) ≥ (1.25)r−1−`′ . We show that this carries over to the vertices of Pr as well.

We would like to prove that for every vertex w ∈ Pr, we have Φr(q) ≥ (1.25)r−`4r(q).

We know by construction of Pr from Pr−1 that vertex w of Pr is the corresponding vertex

of some vertex w′i ∈ Pr−1 with Ki = 1 where K denotes the mask vector that we use to

construct Pr from Pr−1, i.e., w = next4
4(r−1)(w

′
i). By the induction hypothesis, we have

Φr−1(w′i) ≥ (1.25)r−1−`4(r−1)(w
′
i). (5.4)

Therefore, if during super-iteration r, the corresponding level of wi increases, i.e., if we have

`4r(w) ≥ `4(r−1)(w
′
i) + 1, then we have

Φr(w) ≥ Φr−1(w′i)
By (5.4)

≥ (1.25)r−1−`4(r−1)(w
′
i) ≥ (1.25)r−`4r(w),

61

where the first inequality comes from the fact that Φr(wi) > Φr−1(w′i) which itself is directly

followed by (5.3). This means that if the corresponding level of w′i remains unchanged within

super-iteration r, we have our desired bound on Φr(w). The only scenario that is left is if

the corresponding level of w′i remains unchanged, i.e., `4r(w) = `4(r−1)(w
′
i).

If the corresponding level of w′i remains unchanged during super-iteration r, then by

Property P4 of the mask vector K, at least one of {Ki−2,Ki−1,Ki+1,Ki+2} is 0. Suppose

without loss of generality that Ki−2 = 0. First, observe that we have to have

`4(r−1)(w
′
i−2) ≤ `4(r−1)(w

′
i). (5.5)

The reason is that if level of w′i−2, which has distance at most 2 from w′i in graph G4(r−1), has

a higher level than w′i, then by Observation 5.7, the corresponding level of w′i after at most

2 iterations (still within a super-iteration) should increase to at least `4(r−1)(w
′
i−2) which

would contradict the assumption that the corresponding level of w′i remains unchanged for 4

iterations. This means that by the induction hypothesis, now on vertex w′i−2 of path Pr−1,

we have

Φr−1(w′i−2) ≥ (1.25)r−1−`4(r−1)(w
′
i−2)

By (5.5)

≥ (1.25)r−1−`4(r−1)(w
′
i). (5.6)

Now, recall that we assumed Ki−2 = 0. This means, by construction of Φr using (5.3), that

we have to have

Φr(w) ≥ Φr−1(w′i) +
1

4
Φr−1(w′i−2). (5.7)

Therefore, we have

Φr(w) ≥ Φr−1(w′i) +
1

4
Φr−1(w′i−2) By (5.7).

≥
(

(1.25)r−1−`4(r−1)(w
′
i)
)

+
1

4

(
(1.25)r−1−`4(r−1)(w

′
i)
)

By induction hypothesis and (5.6).

= 1.25
(

(1.25)r−1−`4(r−1)(w
′
i)
)

= (1.25)r−`4(r−1)(w
′
i)

≥ (1.25)r−`4r(w). Since `4r(w) ≥ `4(r−1)(w
′
i).

Concluding the proof of Claim 5.14.

Claim 5.15. For any r ≥ 0 with |Pr| > 3, we have
∑

w∈Pr Φr(w) ≤ D + 1.

Proof. The inequality
∑

v∈P0
Φr(v) ≤ D + 1 is followed by the fact that P0, which is a

shortest path between u and v in the original graph has at most D + 1 vertices and that

Φ0(w) = 1 for any vertex w ∈ P0. Moreover, one can easily show that for any r > 0,

we have
∑

w∈Pr Φr(w) ≤
∑

w∈Pr−1
Φr−1(w) directly by the definition of Φr from Φr−1 and

62

Property P1 of the mask vectors used. Combining these two facts via a simple induction on

r proves the claim.

We are now ready to prove Lemma 5.12. Run the algorithm for R := L + 4 logD

super-iterations. If path PR has at most 3 vertices, we are done since our goal is to show

that the distance between the corresponding vertices of u and v in graph GR is at most 2

— which itself would imply that every connected component in GR has diameter at most 2.

In fact, we show that this should always be the case.5 Suppose for the sake of contradiction

that we can continue to super-iteration R in constructing PR and ΦR and still have |PR| > 3.

Let uR := next4R(u) be the corresponding vertex to vertex u by the end of super-iteration

R. Property P1 of our mask vectors in constructing paths P1, . . . , PR ensures that path PR

should start with vertex uR. By Claim 5.14, we have

ΦR(uR) ≥ (1.25)R−`R(uR) ≥ (1.25)R−L, (5.8)

where the latter inequality comes from the assumption that L is an upper bound on the level

of every vertex. Now, since R = L+ 4 logD, we have

R− L ≥ 4 logD. (5.9)

Combining (5.8) with (5.9) we get

ΦR(uR) ≥ (1.25)4 logD > D + 1.

However, this contradicts with Claim 5.15 which guarantees ΦR(uR) should be less than

D + 1. Therefore, our initial assumption that R can be as large as L+ 2 logD cannot hold;

meaning that in O(L+logD) iterations, the remaining graph will be a collection of connected

components of diameter O(1).

Once the diameter of every remaining connected component gets below O(1), it is easy

to confirm that in the next O(L) iterations of the algorithm, the diameter reduces to 1 (i.e.,

every connected component becomes a clique). To see this, note that since the diameter

is O(1), the maximum level within each component propagates to all the vertices in O(1)

iterations. If this budget is not enough for a vertex to connect 2-hop, its level increases by

Lemma 5.9. This level, again, propagates to all other vertices. Eventually, after the next

O(L) iterations, the vertices will reach the maximum possible level and thus have enough

budget to get connected to every remaining vertex in the component.

5More precisely, the “always” here is conditional on the assumption that our high probability events hold.

This is not a problem since otherwise we say the algorithm fails and this happens with probability ≤ 1/n.

63

Overall, it takes O(L+logD) iterations until the diameter of every remaining connected

component becomes O(1) and after that, at most O(L) other iterations for them to become

cliques.

To continue, we give the following upper bound on the levels.

Lemma 5.16. For any vertex v, the value of `(v) never exceeds O(log logT/n n).

Proof. Observe that the only place throughout Algorithm 1 that we increase the level of a

vertex is in Line 4 of the RelabelIntraLevel procedure. Within this line, the budget of the

vertex is also increased from b(v) to b(v)1.25. Now, given that the initial budget of every

vertex is β0 = (T/n)1/2, throughout the algorithm, we have b(v) = β1.25`(v)

0 . On the other

hand, observe that if a vertex reaches a budget of n, it will not be marked as saturated, and

thus, we do not update its level/budget anymore. Therefore, we have b(v) = β
(1.25)`(v)

0 ≤ n

which means `(v) ≤ log1.25 logβ0
n = O(log logT/n n).

Combining the two lemmas above, we can prove the following bound on the round

complexity.

Lemma 5.17. With high probability the number of rounds executed by Algorithm 1 is O(logD+

log logT/n n).

Proof. By Lemma 5.12, it takes only O(L+logD) iterations for Algorithm 1 to halt where L

is an upper bound on the level of the vertices. Lemma 5.16 shows that L = O(log logT/n n).

Therefore, the round complexity of Algorithm 1 is O(logD + log logT/n n).

5.2.4 Analysis of Algorithm 1 – Implementation Details & Space

Lemma 5.18. The total space used by Algorithm 1 is O(T).

Proof. To bound the total space used by Algorithm 1, we have to bound the number of edges

that may exist in the graph. More specifically, we have to show that within the Connect2Hops

subroutine, we do not add too many edges to the graph. Recall that we control this with

the budgets. It is not hard to argue that sum of budgets of remaining vertices in each round

of the algorithm does not exceed T . However, there is a subtle problem that prevents this

property to be sufficient for bounding the number of edges in the graph. The reason is that

throughout the algorithm, the degree of a vertex may be much larger than its budget. For

64

instance in the first iteration, a vertex may have a degree of up to Ω(n) while the budgets

are much smaller.

For the analysis, we require a few definitions. For every iteration r and any vertex

v ∈ Vr, we define dr(v) to be the number of neighbors of v in Gr with level at least `r(v).

Moreover, we define the remaining budget sr(v) of v to be max{0, br(v)− dr(v)} if v is active

and 0 otherwise. To clarify the definition, note that within the Connect2Hops subroutine,

each vertex v connects to at most sr(v) new vertices. We further define

yr := |Er|+
∑
v∈Vr

sr

to be the potential space by the end of iteration r. It is clear by definition that yr is an upper

bound on the total number of edges in the graph after iteration r. Therefore it suffices to

show that yr = O(T) for any r. The base case follows immediately:

Observation 5.19. y0 = O(T).

Proof. We have y0 = |E0| +
∑

v∈V0
sr ≤ m + n · (Tn)1/2 < m + T ≤ O(T) where the last

inequality comes from the fact that T = Ω(m).

In what follows, we argue that for any r, we have yr ≤ y0+O(T) = O(T)+O(T) = O(T)

as desired. To do this, we consider the effect of each of the three subroutines of Algorithm 1 in

any iteration r+1 on the value of yr+1 compared to yr. We first show that the two procedures

Connect2Hops and RelabelInterLevel cannot increase the potential space. We then give an

upper bound of O(T) on the increase in the potential space due to procedure RelabelIntraLevel

over the course of the algorithm (i.e., not just one round).

Connect2Hops procedure. In the Connect2Hops procedure, each vertex v connects itself to

at most sr(v) other vertices of level at least `(v) in its 2-hop as described above. These added

edges, will then decrease the remaining budget of v by definition. Therefore, for any edge

that is added to the graph, the remaining budget of at least one vertex is decreased by 1.

Thus, the total potential space cannot increase.

RelabelInterLevel procedure. Next, within the RelabelInterLevel procedure, we do not add

any edges to the graph. Therefore, the only way that we may increase the potential space

is by increasing the remaining budget of the vertices. If a vertex gets relabeled to a higher

level neighbor, the algorithm marks it as inactive; this by definition decreases its remaining

budget to 0. As such, it only suffices to consider the remaining budget of the vertices that

65

are not relabeled; take one such vertex v. Recall that the remaining budget of v depends on

the level of the neighbors of v as well. The crucial property here is that whenever a vertex is

relabeled to a neighbor, its corresponding level is increased. This implies that the change in

the corresponding level of v’s neighbors cannot increase the remaining budget of v.

There is still one way that v’s remaining budget may increase: if an edge {v, u} with

`r(u) ≥ `r(v) is removed from the graph. Recall that an edge may be removed from the

graph within Line 3 of RelabelInterLevel where we remove duplicate edges or self-loops. Note

that if removal of an edge increases the remaining budget of one of its endpoints only, then

the potential space yr+1 does not change as the increase in
∑

v sr+1(v) is canceled out by

the decrease in |Er+1|. However, we have to argue that removal of an edge cannot increase

the remaining budget of its both end-points. To see this, observe that the graph, before

the RelabelInterLevel procedure cannot have any duplicate edges or self-loops (as we must

have removed them before) and all these edges have been created within this iteration. Take

an edge {u, v} and suppose that there are multiple duplicates of it. All, but at most one,

of duplicates of {u, v} are the result of the relabelings. Call these the relabeled edges and

suppose due to symmetry that any removed edge is relabeled. Consider an edge e′ that is

relabeled to {u, v} and is then removed. At least one of endpoints of e′ must be some vertex

w which is relabeled to either u or v, say u w.l.o.g. An equivalent procedure is to remove

e′ before w is relabeled to u and the outcome would be the same. Since u 6∈ e′, there is no

way that removing e′ would change the remaining budget of u. On the other hand, since w

is relabeled and does not survive to Vr+1 it does not have any effect on sr+1. This means

that removing any duplicate edge increases sum of remaining budgets by at most 1 thus the

potential space cannot increase.

RelabelIntraLevel procedure. We showed that subroutines Connect2Hops and RelabelInterLevel

cannot increase the potential space of the previous round. Here, we consider the effect of the

last subroutine RelabelIntraLevel. Similar to RelabelInterLevel, we do not add any edges to the

graph. Therefore, we only have to analyze the remaining budgets after this procedure.

First take a vertex v that is not marked as saturated. The remaining budget of v

may increase if some of its edges are removed because of duplicates which are caused by

contracting saturated vertices to their leaders. However, precisely for the same argument

that we had for the RelabelInterLevel procedure, removal of an edge can only increase the

remaining budget of at most one of its end-points thus this does not increase the potential

space.

66

Next, if a vertex v is marked as saturated but is not marked as a leader, by Claim 5.8

it is, w.h.p., going to get contracted to a leader and removed from the graph. Therefore, the

only case for which the remaining budget of a vertex may increase is for saturated vertices

that are marked as leaders. We assume the worst case. That is, we assume that if a vertex

v is saturated and is marked as a leader within iteration r + 1, then the potential space is

increased by its new budget br+1(v) (note, by definition, that remaining budget can never be

larger than budget). Instead of analyzing the effect of this increase within one iteration, we

show that the total sum of such increases over all iterations of the algorithm is bounded by

O(T).

Let us use βi to denote the budget of vertices with level i and use ni to denote the

number of vertices that have been selected as a leader over the course of algorithm for at

least i times. In other words, ni denotes the total number of vertices that reach a level of at

least i throughout the algorithm. We can bound sum of increases in potential space due to

the RelabelIntraLevel procedure over all iterations of the algorithm by:

∞∑
i=1

βi · ni. (5.10)

Thus it suffices to bound this quantity by O(T).

Claim 5.20. For any i ≥ 1, we have βi = (βi−1)1.25 and have β0 = (T/n)1/2.

Proof. We have β0 = (T/n)1/2 for Line 1 of Algorithm 1. Furthermore, we have βi =

(βi−1)1.25 due to Line 4 of RelabelIntraLevel which is the only place we increase the level of a

vertex and at the same time increase its budget from b to b1.25.

We also have the following bound on ni:

Claim 5.21. For any i ≥ 1 we have ni < ni−1 · (βi−1)−0.25.

Before describing the proof of Claim 5.21, let us first see we can get an upper bound

of O(T) for the value of (5.10). For any i ≥ 1, we have

βi · ni
Claim 5.20

= (βi−1)1.25 · ni
Claim 5.21

< (βi−1)1.25 · (βi−1)−0.25 · ni−1 = βi−1 · ni−1. (5.11)

On the other hand, recall by Lemma 5.16 that the maximum possible level for a vertex is

L = O(log logT/n n), meaning that for any i > L we have ni = 0; thus:

∞∑
i=1

βi · ni =
L∑
i=1

βi · ni
(5.11)
< L(β0 · n0) ≤ O(log log n) · (T/n)1/2 · n,

67

where the last inequality comes from the fact that β0 = (T/n)1/2 due to Claim 5.20 and

n0 = n by definition. Moreover, recall that T ≥ m+ n logα n for some large enough constant

α, therefore (T/n)1/2 ≥ logα/2 n� O(log log n). This means that

O(log log n) · (T/n)1/2 · n� (T/n)1/2 · (T/n)1/2 · n = T.

Therefore, the total increase over the potential space over the course of the algorithm is at

most T , meaning that indeed for any r, yr = O(T) and thus in any iteration we have at most

O(T) edges. It is only left to prove Claim 5.21.

Proof of Claim 5.21. To prove the claim, we show that for every vertex of level i−1 that gets

saturated and is marked as a leader, there are (βi−1)0.5 other unique vertices of level i − 1

that are not marked as a leader and are removed from the graph. This is clearly sufficient to

show ni ≤ ni−1 · (βi−1)−0.5 � ni−1 · (βi−1)−0.25.

Consider some arbitrary iteration of the algorithm, and denote the set of saturated

vertices and leaders with budget βi−1 by S and L respectively. Since each saturated vertex

of budget βi−1 is chosen to be a leader independently with probability Θ(logn
βi−1

), we have

E[|L|] = Θ(logn
βi−1
|S|). On the other hand, note that if S 6= ∅, we have |S| ≥ βi−1 since a vertex

of budget βi−1 is marked as saturated in Line 1 of RelabelIntraLevel if it has at least βi−1

active neighbors with budget βi−1, all of which will also get marked as saturated in Line 2

and thus join S. Therefore, |S| ≥ βi−1, meaning that E[|L|] = Θ(logn
βi−1
|S|) = Ω(log n). Thus,

by a standard Chernoff bound argument, we get |L| = Θ(logn
βi−1
|S|) with high probability. On

the other hand, recall that by Claim 5.8, every non-leader saturated vertex will be contracted

to a leader in its 2-hop. That is, all vertices in S \ L will be removed from the graph. This,

averaged over the vertices in L, we get

|S \ L|
|L|

≥ |S| − |L|
|L|

≥ |S|
|L|
− 1 ≥ |S|

Θ(logn
βi−1
|S|)
− 1 ≥ Θ

(
βi−1

log n

)
unique vertices that are removed from the graph per leader. Thus, it suffices to show that
βi−1

logn � (βi−1)0.5. For this, observe from Claim 5.20 and T ≥ m + n logα n that βi−1 ≥

(T/n)1/2 ≥ logα/2 n where α is some sufficiently large constant. It suffices to set α > 4,

say α = 5, to get βi−1 � log2 n and thus log n � (βi−1)0.5. This indeed means Θ(βi−1

logn) �
βi−1

(βi−1)0.5 = (βi−1)0.5 as desired.

We already showed how proving Claim 5.21 gives an upper bound of O(T) on the

potential space of all iterations, which by definition, is also an upper bound on the number

of edges in the graph, concluding the proof of Lemma 5.18.

68

The next lemma is important for implementing the algorithm.

Lemma 5.22. For any r, we have
∑

v∈Vr(br(v))2 ≤ T .

Proof. We use induction on r. For the base case with r = 0, we have∑
v∈V0

(b0(v))2 =
∑
v∈V0

((T/n)1/2)2 = T.

Suppose by the induction hypothesis that
∑

v∈Vr−1
(br−1(v))2 ≤ T , we prove

∑
v∈Vr(br(v))2 ≤

T. For this, it suffices to show that
∑

v∈Vr(br(v))2 ≤
∑

v∈Vr−1
(br−1(v))2. Recall that we only

increase the budgets in the RelabelIntraLevel procedure, thus we only have to consider the

effect of this procedure. Take a vertex v ∈ Vr and with br(v) > br−1(v) (otherwise the sum

remains unchanged clearly). Note that v must have been marked as a leader in iteration r

and thus br(v) = br−1(v)1.25. Recall from the proof of Claim 5.21 above that there are at

least br−1(v)0.5 unique vertices for v with budget br−1(v) that get removed from the graph in

iteration r. Denote the set of these vertices by U . Removing these vertices decreases sum of

budgets’ square by ∑
u∈U

br−1(u)2 = |U |(br−1(v))2 ≥ br−1(v)2.5. (5.12)

On the other hand, increasing the budget of v from br−1(v) to br−1(v)1.25 increases the sum

of budgets’ square by (br−1(v)1.25)2 = br−1(v)2.5 which is not more than the decrease due to

(5.12). Thus, we have
∑

v∈Vr(br(v))2 ≤
∑

v∈Vr−1
(br−1(v))2 as desired.

It only remains to argue that each iteration of Algorithm 1 can be implemented in O(1)

rounds of MPC using O(nδ) space per machine and with O(T) total space. Since the proof

is straightforward by known primitives, we omit the details. See [41] for details.

5.3 Improving Total Space to O(m)

In the previous section, we showed how it is possible to find connected components of an

input graph in O(logD + log logT/n n) rounds so long as T ≥ m + n logα n. In this section,

we improve the total space to O(m). The key to the prove is an algorithm that shrinks the

number of vertices by a constant factor with high probability. More formally:

Lemma 5.23. There exists an MPC algorithm using O(nδ) space per machine and O(m)

total space that with high probability, converts any graph G(V,E) with n vertices and m edges

to a graph G′(V ′, E′) and outputs a function f : V → V ′ such that:

69

1. |V ′| ≤ γn for some absolute constant γ < 1.

2. |E′| ≤ |E|.

3. For any two vertices u and v in V , vertices f(u) and f(v) in V ′ are in the same

component of G′ if and only if u and v are in the same component of G.

We emphasize that Lemma 5.23 shrinks the number of vertices by a constant factor

with high probability. This is crucial for our analysis. An algorithm that shrinks the number

of vertices by a constant factor in expectation was already known [109] but cannot be used

for our purpose.

Let us first show how Lemma 5.23 can be used to improve total space to O(m) proving

Theorem 5.2.

Proof of Theorem 5.2. First, observe that if m ≥ n logα n or if T ≥ m + n logα n, then the

algorithm of Section 5.2 already satisfiees the requirements of Theorem 5.2. Assuming that

this is not the case, we first run the algorithm of Lemma 5.23 for (α log1/γ log n) iterations.

Let G′(V ′, E′) be the final graph and f be the function mapping the vertices of the original

graph to those of G′. We have

|V ′| ≤ n · γα log1/γ logn = n · log−α n.

Now, we can run the algorithm of Section 5.2 on graph G′ to identify its connected compo-

nents. The total space required for this is

O(|E′|+ |V ′| · logα |V ′|) = O
(
m+ (n · log−α n) · logα n

)
= O(m+ n) = O(m).

We can then use function f to identify connected components of the original graph in O(1)

rounds.

Also, observe that the running time required is O(log log n) +O(logD + log logT/n n).

Given that m ≤ n logα n and T ≤ m + n logα n (as discussed above), we have T/n =

O(poly log n), thus log logT/n n = Ω(log logn
log logn) = Ω(log log n); meaning that O(log log n) +

O(logD + log logT/n n) = O(logD + log logT/n n) and thus the running time also remains

asymptotically unchanged.

We now turn to prove Lemma 5.23.

Proof of Lemma 5.23. In order to prove this lemma, we show that the following procedure

reduces the number of vertices of the graph by a constant factor, with high probability.

70

This procedure only merges some neighboring vertices and hence maintains the connected

components. In this procedure, without loss of generality, we assume that there is no isolated

vertices. One can simply label and remove all isolated vertices at the beginning. It is easy

to implement this procedure in 1
δ rounds using O(nδ) space per machine and a total space of

O(m) (see [41] for details).

Algorithm 2. Shrinks the number of vertices by a constant factor in O(1) rounds w.h.p.

1. For each vertex v, draw a directed edge from v to its neighbor with the minimum id.

2. If for two vertices u and v, we drew two directed edges (u, v) and (v, u), we remove one
arbitrary.

3. If a vertex has more than one incoming edge, we remove its outgoing edge.

4. If a vertex v has more than one incoming edge, we merge it with all its neighbors pointing
to v and remove the incoming directed edges of the neighbors of v.

5. We remove each edge with probability 2/3.

6. We merge each directed isolated edge.

Next we show that this procedure reduces the number of vertices by a constant factor.

For readability, we do not optimize this constant. Note that in Line 1 we are adding n edges.

It is easy to see that there is no cycle of length larger than 2 in the directed graph constructed

in Line 1. Line 2 removes at most half of the edges. Moreover, it removes all cycles of length

2. Thus by the end of Line 2 we have a rooted forest with at least n/2 edges.

After Line 3 every vertex with indegree more than 1 has no outgoing edges. Recall

that each vertex has at most one outgoing edge. Thus, after Line 3 we have a collection of

rooted trees where only the root may have degree more than 2. We call such trees long tail

stars. Note that if we remove the outgoing edge of a vertex v there are two incoming edges

pointing to v (which uniquely correspond to v). Although the process of Line 3 may cascade

and remove the incoming edges of v, the following simple double counting argument bounds

the number of removed edges. Note that this argument is just to bound the number of the

edges and we do not require to run it, in order to execute our algorithm.

We put a token on each directed edge of the forest (before running Line 3). Next we

are going to move the tokens such that (a) we never have more than two tokens on each edge,

and (b) at the end we move all tokens to the edges that survive after Line 3. This says that

at least half of the edges (i.e., at least n/4 edges) survive Line 3.

We traverse over each rooted tree from the root to the leaves. At each step, if the

outgoing edge of a vertex v is removed, by induction hypothesis there are at most two tokens

on the edge. Also, v has at least two incoming edges. We move each of the tokens on the

71

outgoing edge of v to one of its incoming edges. Note that this is the only time we move a

token to the incoming edges of v and hence we do not have more than two tokens on each

edge as desired.

If we merge a vertex v with r incoming edges in Line 4, we remove at most 2r directed

edges (r incoming edges of v and at most one incoming edge per each neighbor of v. On the

other hand, we decrease the number of vertices by r. Thus, if this stage removes more than

n/8 edges the number of vertices drops to at most n− n
16 = 15

16n, as desired. To complete the

proof, we assume that at most n/8 edges are removed in Line 4 and show that in this case

Lines 5 and 6 decrease the number of vertices by a constant factor.

Note that Line 4 removes the root of all long tailed stars. Thus after Line 4 we have

a collection of directed edges. The probability that an edge passed to Line 5 becomes an

isolated edge after sampling is at least 2
3 ·

1
3 ·

2
3 = 4

27 . If we mark every third edge (starting

from an end of each path), the chance that each marked edge becomes an isolated edge after

sampling is independent of other marked edges. There are 1
3 ·

n
8 = n

24 marked edges. Let

X be a random variable that indicates the number of marked edges that are isolated after

sampling. Note that E[X] ≥ 4
27

n
24 = n

162 . By applying a simple Chernoff bound we have

Pr
[
X ≤ 0.5

n

162

]
≤ exp

(
−

0.52 n
162

2

)
= exp

(
− n

1296

)
.

Therefore, with high probability we merge at least n
324 edges in Line 6 as desired.

72

Part II

Sublinear-Time Algorithms

Chapter 6

Sublinear Algorithms for Matching & Vertex Cover

In this chapter, we study algorithms that run in time sublinear in the input size. That

is, the algorithm is not even able to read the whole data. To achieve such algorithms, it

is important to specify how the input is presented. For graph problems—the focus of this

thesis—two models have been commonly considered in the literature:

• The adjacency list model: In this model, for any vertex v of its choice, the algorithm

may query the degree of v in the graph and, for any 1 ≤ i ≤ deg(v), may query the i-th

neighbor of v stored in an arbitrarily ordered list.

• The adjacency matrix model: In this model, the algorithm may query, for any

vertex-pair (u, v) of its choice, whether or not u and v are adjacent in the graph.

We consider both models in this chapter.

Our focus is particularly on algorithms that estimate the size of maximum matching

or minimum vertex cover in general graphs. To be consistent with the conventions of the

literature of sublinear time algorithms, for α ≥ 1 and 0 ≤ ε ≤ 1, we say in this chapter

that an estimate µ̃(G) for the maximum matching size µ(G) and an estimate ν̃(G) for the

minimum vertex cover size ν(G) provide “multiplicative-additive” (α, εn)-approximations if

µ(G)

α
− εn ≤ µ̃(G) ≤ µ(G) and ν(G) ≤ ν̃(G) ≤ αν(G) + εn.

A standard multiplicative α-approximation is also essentially a (α, 0)-approximation.

It is well-known that if M is a maximal matching, then the number of edges of M

2-approximates µ(G) and the number of vertices of M 2-approximates ν(G). But the greedy

algorithm for maximal matching takes linear time in the input size to find. Can we achieve

the same in sublinear time?

Although at the first glance it may seem impossible to do much without reading the

74

whole input, numerous sublinear-time algorithms have been designed over the years for var-

ious optimization problems. In addition to matching and vertex cover, which have been

studied extensively in the area [139, 133, 154, 136, 107, 69], the list includes estimating the

weight/size of minimum spanning tree (MST) [67, 75], traveling salesman problem (TSP)

[69], k-nearest neighbor graph [77], graph’s average degree [87, 97], as well as problems such

as vertex coloring [16], metric linear sampling [83], and many others. (This is by no means a

comprehensive list of all the prior works.) For some of the classic results of the area, see the

excellent survey of Czumaj and Sohler [76].

The randomized greedy maximal matching (RGMM) algorithm of Chapter 3, and in

particular its local simulation oracle discussed in Section 3.2 is the basis of one of the most

successful approaches for estimating the size of matching and vertex cover in sublinear time.

To utilize this local simulation, the most common approach is to plug it into the framework

of Parnas and Ron [139]: Pick a number of random vertices in the graph, simulate the local

RGMM on them, and report the fraction of them that are matched as an estimate for the

fraction of vertices matched in the whole graph. The final time-complexity of the algorithm,

therefore, depends on the size of the local neighborhood that one has to explore for each

randomly chosen vertex, which is also known as the “average query-complexity” of RGMM

[133, 154, 136].

Indeed, our main contribution in this chapter is to prove the near-tight bound of The-

orem 3.2 for the average query-complexity of RGMM. Recall that Theorem 3.2 asserts that

for a vertex chosen uniformly at random, the expected query complexity is O(d̄ · log n).

6.1 Applications of Theorem 3.2

Theorem 3.2 leads to a number of sublinear-time algorithms for matching and vertex cover

that are provably time-optimal up to logarithmic factors. We elaborate on these applications

here and also mention some other applications of Theorem 3.2.

As before, in all the statements below we use n to denote the number of vertices, ∆ to

denote the maximum degree, and d̄ to denote average degree.

Application 1 – multiplicative approximation in the adjacency list model:

Theorem 6.1. For any ε > 0, there is an algorithm that with probability 1 − 1/poly(n)

reports a (2 + ε)-approximation to the size of maximum matching and that of minimum

vertex cover using O(n) + Õ(∆/ε2) time and queries in the adjacency list model.

75

Observe that Ω(n) queries are necessary even to distinguish an empty graph from

one with just one edge. Thus, Ω(n) time and queries are necessary for any multiplicative

approximation in this model, implying that Theorem 6.1 is nearly time-optimal.

Theorem 6.1, notably, gives the first multiplicative estimator in the literature that runs

in Õ(n) time for all graphs. For a (2+ε)-approximation, in particular, no o(n2) time algorithm

was known for general graphs prior to our work. Allowing a larger O(1)-approximation, a

recent result of Kapralov, Mitrovic, Norouzi-Fard, and Tardos [108] with some work leads to

a O(n+ ∆2/d̄) time algorithm which can take Ω̃(n
√
n) time.

Interestingly, under the rather mild assumptions that d̄ = Ω(1) (which, e.g., holds if

there are no singleton vertices) and that (estimates of) d̄ and ∆ are given, the Ω(n) lower

bound is avoidable and the algorithm of Theorem 6.1 actually runs in Õ(∆/ε2) time.

Application 2 – multiplicative-additive approximation in the adjacency list model:

Theorem 6.2. For any ε > 0, there is an algorithm that with probability 1 − 1/poly(n)

reports a (2, εn)-approximation to the size of maximum matching and that of minimum

vertex cover using Õ((d̄+ 1)/ε2) time and queries in the adjacency list query model.

Theorem 6.2 (nearly) matches an Ω(d̄+ 1) lower bound of Parnas and Ron [139] that

holds for any (O(1), εn)-approximation of maximum matching or minimum vertex cover in

this model. This culminates a long line of work [139, 133, 154, 136, 108] on this problem that

we overview next.

Parnas and Ron [139] were the first to give a multiplicative-additive approximation

for matching and vertex cover. They showed how to obtain a (2, εn)-approximation in

∆O(log(∆/ε)) time by simulating a distributed local algorithm for each sampled vertex. A

quasi-polynomial dependence on ∆, however, is unavoidable with this approach due to exist-

ing distributed lower bounds [117].

The next wave of results [133, 154, 136] were based on the RGMM algorithm. Yoshida et

al. [154] built on the work of Nguyen and Onak [133] and, notably, gave the first algorithm

with a polynomial-in-∆ time-complexity of O(∆4/ε2) for a (2, εn)-approximation. Onak et

al. [136] later shaved off some of the ∆ factors from the bound of [154]. Although a bound

of Õε(∆) was first claimed in [136], Chen, Kannan, and Khanna [69] discovered a subtlety

with a claim of [136] that happens to be crucial for their final result. Nonetheless, as also

observed by Chen et al. [69], the techniques developed in [136] combined with the average

76

query-complexity analysis of [154] discussed above, still implies an improved bound of Õ((d̄ ·

∆ + 1)/ε2) = Õ(∆2/ε2) for a (2, εn)-approximation.1

Observe that all the algorithms of the literature discussed above require some upper

bound on the degrees to run in sublinear-time and can take up to Ω(n2) time for general

graphs. A more recent algorithm by Kapralov et al. [108] has a more desirable time-complexity

of O(∆/ε2). However, it only obtains an (O(1), ε)-approximation and as pointed out by Chen,

Kannan, and Khanna [69]:

“Unfortunately, the constant hidden in the O(1) notation [of [108]] is very large, and ef-

ficiently obtaining a (2, εn)-approximation to matching size remains an important open

problem” [69].

Theorem 6.2, in light of the lower bound of [139], strongly resolves this open problem.

Application 3 – multiplicative-additive approximation in the adjacency matrix model:

Theorem 6.3. For any ε > 0, there is an algorithm that with probability 1 − 1/poly(n)

reports a (2, εn)-approximation to the size of maximum matching and that of minimum

vertex cover using Õ(n/ε3) time and queries in the adjacency matrix query model.

A similar bound to Theorem 6.3 was claimed in [136]. However, as discussed above,

the proof of [136] had a subtlety. Chen et al. [69] proposed a fix, but their algorithm runs in

Õε(n
√
n) time. Theorem 6.3 improves this latter bound by a factor of

√
n.

On the lower bound side, suppose that the graph is either a random perfect matching

or is empty. It is not hard to see that distinguishing the two cases requires Ω(n) queries to

the adjacency matrix. As such, Ω(n) queries are necessary for any multiplicative-additive

approximation in the adjacency-matrix model, implying that Theorem 6.3 is nearly time-

optimal. Note that distinguishing an empty graph from one that includes only one edge

requires Ω(n2) queries in the adjacency-matrix model. This implies that, unlike Theorem 6.1

for the adjacency-list model, no non-trivial multiplicative approximation can be obtained in

the adjacency-matrix model.

1We note that while Theorem 6.2 can be seen as a fix to [136], our techniques are very different from the

approach of [136]. Particularly, [136] did not claim the tight upper bound of Theorem 3.2 that we prove here,

but rather claimed a weaker bound of O(d̄ · ρ) where ρ is the ratio of the maximum degree over the min

degree. As a result, even if one manages to fix the proof of [136], one does not get the strong multiplicative

approximation of Theorem 6.1.

77

To prove Theorem 6.3, in addition to Theorem 3.2, we give a new reduction from the

adjacency matrix model to the adjacency list model that, unlike the reduction of [136], does

not lead to parallel edges or self-loops. This is crucial for our result; see Section 6.5.

Other Applications – TSP: Chen et al. [69] gave sublinear time algorithms for estimating

the size of graphic TSP and (1, 2)-TSP in the adjacency matrix model. Their algorithms

utilize a matching size estimator as a subroutine. Plugging Theorem 6.3 into their framework

implies that:

Corollary 6.4 (of using Theorem 6.3 in the algorithms of [69]). There is an Õ(n)-time

randomized algorithm that estimates the cost of graphic TSP to within a factor of (27/14).

There is also an Õ(n)-time randomized algorithm that estimates the cost of (1, 2)-TSP to

within a factor of 1.625.

Instead of Theorem 6.3, Chen et al. [69] used their Õ(n
√
n)-time matching size esti-

mator in their algorithms. As a result, their algorithms were slower by a factor of
√
n than

those in Corollary 6.4.

Other Applications – AMPC: The adaptive massively parallel computations (AMPC)

model was first introduced by [42] and has been further studied by [47, 66]. While the precise

definition of the AMPC model is out of the scope of this chapter, it augments the standard

MPC model that we covered extensively at Part I with a “distributed hash table”. Combined

with the techniques developed for the maximal independent set problem in [42], Theorem 3.2

implies an O(1)-round AMPC algorithm for maximal matching using a strongly sublinear

space of O(nδ) per machine (for any constant δ > 0) and an optimal total space of Õ(m) in

m-edge graphs. This has to be compared with an O(log log n)-round algorithm presented in

[47] that has the same space complexity.

The essence of the improved AMPC algorithm mentioned above is the surprising fact,

implicit in Theorem 3.2, that if one starts the local simulation of RGMM from every vertex in

the graph all in parallel, then the expected sum of the query-complexities of all these parallel

calls, or equivalently the “total work” of the algorithm, is n · O(d̄ log n) = O(m log n), i.e.,

near-linear in the input size!

78

6.2 Our Techniques & Background on the Query-Complexity of RGMM

As discussed above, our main technical contribution is the upper bound of Theorem 3.2 on

the average query-complexity of the randomized greedy maximal matching algorithm. In

this section, we provide more context about this result, further compare it to the previous

bounds, and give an overview of our techniques and new insights for proving it.

The first problem is that analyzing the expected query-complexity for a given edge or

vertex seems to be challenging. In fact, obtaining a poly(∆, log n) bound for this problem

remains a major open question in the study of local computation algorithms (LCA’s) [5, 92].

In a beautiful paper, Yoshida, Yamamoto, and Ito [154] got around this challenge and proved

a poly(∆) upper bound on the average query-complexity with a global analysis. Namely,

instead of bounding the expected number of queries that an edge e generates, they showed that

for any edge e = (u, v) the expected number of edges in the graph whose query process reaches

e is at most O(deg(u) + deg(v)).2 This way, the expected sum of all queries starting from all

the edges in the graph, can be upper bounded by
∑

(u,v)∈E O(deg(u)+deg(v)) = O(L), where

L is the number of edges in the line-graph. This implies that for an edge chosen uniformly

at random, the expected query-complexity can be upper bounded by O(L/m). Although

it is not immediate, we note that essentially the same proof also implies that for a vertex

chosen uniformly at random, the expected query-complexity is O(L/n). As we discussed in

Section 3.2, L/n is O(d̄ ·∆) and can also be as large as Ω(d̄ ·∆).

Our new analysis builds on some of the ideas introduced by Yoshida et al. [154]. Similar

to their work and, crucially, instead of directly analyzing the number of recursive calls out of

an edge or a vertex, we analyze the recursive calls made to an edge or a vertex. There are,

however, several crucial differences between the two approaches that leads to our near-tight

analysis in Theorem 3.2.

We prove that for any edge e = (u, v) in the graph, the expected number of starting

queries that reach e can be upper bounded by O(log n). This improves over the previous

upper bound of O(deg(u) + deg(v)) by Yoshida et al. [154] and is the key component of our

analysis.

Let us fix edge e and overview how we prove the bound of O(log n) on the expected

number of starting points that query e. To prove this upper bound, if in a permutation π we

happen to query e from q different starting points, we charge q other permutations π1, . . . , πq.

2The analysis of [154] proceeds on the line-graph and deg(u) + deg(v) is the degree of e in the line-graph.

79

Observe that by a simple double counting argument, the expected number of times that a

random permutation π ∈ Π is charged by all other permutations combined, is exactly equal

to the expected number of starting points that query e in a random permutation π. As such,

if we prove an upper bound of T on the number of times that each permutation is charged,

then we get that e is queried by at most T starting points in expectation. Unfortunately,

however, we remark that there will be permutations that get charged up to even Ω(n) times

with our charging method.

To get past this hurdle, we draw a novel connection to an orthogonal line of work

on bounding the parallel depth of RGMM (or more generally randomized greedy maximal

independent set) pioneered by Blelloch, Fineman, and Shun [59] whose bounds were tightened

by Fischer and Noever [89]. In particular, by carefully analyzing the structure of RGMM

queries, we show that if a permutation π is charged b times with our charging method, then

the parallel depth of GMM for this permutation must be at least Ω(b). Plugging the high

probability upper bound of [89] that bounds the parallel depth of a random permutation by

O(log n), guarantees that 1 − 1/poly(n) fraction of the permutations are charged at most

O(log n) times, which also suffices for proving Theorem 3.2.

6.3 Average Query-Complexity of RGMM

Recall from Section 3.2 that we use T (v, π) to denote the number of recursive calls to the

edge oracle EO(·, π) over the course of answering VO(v, π). We note here again that for some

edge e, EO(e, π) may be called multiple times during the execution of VO(v, π) and we count

all of these in T (v, π), though only the first call to EO(e, π) may generate new recursive calls

as the rest of the calls use the cached value for EO(e, π).

In this section, we prove Theorem 3.2 discussed in Section 3.2 that is restated below:

Theorem 3.2 (restated). For a vertex v ∼ V chosen uniformly at random and for a

permutation π chosen independently and uniformly at random,

E
v∼V,π

[T (v, π)] = O(d̄ · log n),

where recall that n := |V | and d̄ is the average degree of the graph.

For any edge e ∈ E and a vertex v ∈ V , we use Q(e, v, π) to denote the number

of times that EO(e, π) is called during the execution of VO(v, π), and we define Q(e, π) :=∑
v∈V Q(e, v, π). The following immediately follows from the definition:

80

Observation 6.5. For any π ∈ Π and any v ∈ V , T (v, π) =
∑

e∈E Q(e, v, π).

The next bound holds because we cache query results as discussed in Section 3.2.

Observation 6.6. For every edge e = {a, b} and every π ∈ Π, Q(e, π) ≤ O(n2).

Proof. Take an arbitrary vertex v ∈ V . Over the course of answering VO(v, π), we either

call EO(e, π) directly by the vertex oracle (at most once) or during the execution of EO(f, π)

for some edge f incident to e. The key observation is that EO(f, π) generates new recursive

calls only the first time that it is called (due to caching). Hence, in total EO(e, π) is called

at most (degG(a) − 1) + (degG(b) − 1) + 1 ≤ 2n − 1 times while answering VO(v, π). This

means Q(e, v, π) ≤ 2n − 1. Since Q(e, π) =
∑

v Q(e, v, π), we get Q(e, π) ≤
∑

v(2n − 1) =

n(2n− 1) = O(n2).

The main technical part is the proof of Lemma 6.7 below. Intuitively, the lemma states

that if we run the vertex oracle on every vertex v ∈ V all in parallel (in a way that the cashed

values stored for one parallel call are not used for another), then in expectation over π, the

total number of times that edge oracle EO(e, π) is called can be bounded by O(log n).

Lemma 6.7. For any edge e, Eπ[Q(e, π)] = O(log n).

Lemma 6.7 easily implies Theorem 3.2 as described next.

Proof of Theorem 3.2 via Lemma 6.7. It holds that

E
π

[∑
v∈V

T (v, π)

]
Obs 6.5

= E
π

[∑
v∈V

∑
e∈E

Q(e, v, π)

]
= E

π

[∑
e∈E

∑
v∈V

Q(e, v, π)

]
= E

π

[∑
e∈E

Q(e, π)

]
=
∑
e∈E

E
π

[Q(e, π)]
Lemma 6.7

=
∑
e∈E

O(log n) = O(m log n). (6.1)

Therefore, for a vertex v ∈ V that is chosen uniformly at random from V , we get

E
v,π

[T (v, π)] =
1

n
·E
π

[∑
v∈V

T (v, π)

]
(6.1)
=

1

n
·O(m log n) = O(d̄ · log n).

The rest of this section is devoted to proving Lemma 6.7.

Query paths: Let Sv,π be the stack of recursive calls to the edge oracle during the execution

of VO(v, π). Namely, whenever the edge oracle EO(e, π) is called on some edge e we push e

to the stack, and pop e when the value of EO(e, π) is determined. Let P = (e1, . . . , ek) be

the ordered set of edges inside Sv,π at some point during the execution of VO(v, π) with ek

81

being the last edge pushed into the stack. Because our vertex and edge oracles both process

the neighboring edges greedily in the increasing order of their ranks, it is easy to verify that

P must be a path in graph G with v being one of its endpoints (particularly v ∈ e1). Now if

we make the edges in P directed such that ~P = (~e1, . . . , ~ek) is a directed path starting from

v, we call ~P a (v, π)-query-path. With this definition, T (v, π) is essentially the total number

of (v, π)-query-paths.

Let us take an edge e = {a, b} ∈ E and let ~e = (a, b) be the same edge made directed

from a to b. We define Q(~e, v, π) to be the set of all (v, π)-query-paths that end at ~e (in this

precise direction) and define Q(~e, π) :=
⋃
v∈V Q(~e, v, π). Furthermore, we define Q(~e, v, π) :=

|Q(~e, v, π)| and define Q(~e, π) :=
∑

v∈V Q(~e, v, π) = |Q(~e, π)| (the latter equality follows since

Q(~e, v, π) and Q(~e, u, π) are disjoint for u 6= v).

Observation 6.8. Let e = {a, b}, ~e = (a, b), and ~e = (b, a). We have Q(e, π) = Q(~e, π) +

Q(~e, π).

Proof. Recall from the definition that Q(e, v, π) is the number of times that edge oracle

EO(e, π) is called during the execution of VO(v, π). Every time that we call EO(e, π), we add

e to the stack Sv,π and thus get exactly one (v, π)-query-path that ends at e either in the

direction of ~e or ~e. This implies that Q(e, v, π) = Q(~e, v, π) + Q(~e, v, π). The observation

follows since by definition Q(~e, π) =
∑

v Q(~e, v, π), Q(e, π) =
∑

v Q(e, v, π), and Q(~e, π) =∑
v Q(~e, v, π).

In what follows, we prove the following lemma which easily implies Lemma 6.7.

Lemma 6.9. For any arbitrarily directed edge ~e = (a, b), Eπ[Q(~e, π)] = O(log n).

Proof of Lemma 6.7 via Lemma 6.9. By Observation 6.8, Lemma 6.9 implies Lemma 6.7

since for any edge e = {u, v}, Eπ[Q(e, π)] = Eπ[Q(~e, π)]+Eπ[Q(~e, π)] = O(log n)+O(log n) =

O(log n).

We now turn to prove Lemma 6.9 for edge ~e that is fixed for the rest of the proof.

First, given a permutation π ∈ Π and a directed path ~P = (~e1, . . . , ~ek), we define

φ(π, ~P) ∈ Π to be another permutation σ ∈ Π constructed as:

(σ(e1), . . . , σ(ek−1), σ(ek)) := (π(e2), . . . , π(ek), π(e1)), and

σ(e′) := π(e′) ∀e′ 6∈ ~P .

82

That is, φ(π, ~P) is obtained by rotating the ranks of π along ~P in the reverse direction.

Now we construct a bipartite graph H = H(~e) with two parts A and B such that

|A| = |B| = |Π|. Each permutation π ∈ Π over the edge-set of G has one corresponding

vertex πA in A and one corresponding vertex πB in B. Furthermore, for any permutation

π ∈ Π and any query-path ~P = (~e1, . . . , ~ek = ~e) ∈ Q(~e, π), we connect vertex πA ∈ A to

vertex σB ∈ B corresponding to permutation σ := φ(π, ~P).

Graph H is particularly constructed such that for each permutation π ∈ Π the degree

of vertex πA ∈ A equals Q(~e, π). Namely:

Observation 6.10. For any permutation π ∈ Π, degH(πA) = Q(~e, π).

Proof. By construction there is a one-to-one mapping between the edges of πA and query

paths ~P ∈ Q(~e, π). Thus degH(πA) = |Q(~e, π)| = Q(~e, π).

Therefore to prove Lemma 6.9 that Eπ[Q(~e, π)] = O(log n), it suffices to bound the

average degree of graph H by O(log n). In other words, it suffices to show that for a vertex

πA ∈ A chosen uniformly at random, EπA∼A[degH(πA)] = O(log n). This is our plan for the

rest of the proof.

For some large enough constant c ≥ 1 and parameter β = c log n, we partition Π into

two subsets of likely permutations L and unlikely permutations U as follows:

L :=

{
π ∈ Π

∣∣∣ max
P∈Q(~e,π)

|P | ≤ β
}
, U := Π \ L. (6.2)

In words, if all query-paths in Q(~e, π) have length ≤ β then π ∈ L, and otherwise π ∈ U .

We use AL (resp. AU) to denote the set of vertices in part A of graph H that correspond to

permutations in L (resp. U).

We use the next two lemmas to bound the number of edges connected to AU and AL

respectively.

Lemma 6.11. Any vertex σB ∈ B has at most β neighbors in AL.

Lemma 6.12. If constant c is large enough, |AU | ≤ m!/n2.

Let us first see how Lemmas 6.11 and 6.12 prove Lemma 6.9 (and thus Theorem 3.2 as

discussed before). We then turn to prove these two claims.

Proof of Lemma 6.9 via Lemmas 6.11 and 6.12. We first upper bound the size of the edge-

set E(H) of H by O(m! log n). Since each vertex πA ∈ A has degree O(n2) by Observation 6.6,

83

and that by Lemma 6.12, |AU | ≤ m!/n2, the number of edges connected to AU is m!
n2 ·O(n2) =

O(m!). Moreover, by Lemma 6.11, each vertex σB ∈ B has at most β neighbors in AL. Since

H is bipartite and every edge of AL goes to B, the total number of edges connected to AL can

be upper bounded by |B|·β = m!·c log n = O(m! log n). Since AL and AU partition A and that

every edge of H has one endpoint in A, we get |E(H)| = O(m! log n) +O(m!) = O(m! log n).

Now if we pick a vertex πA from A, it has expected degree |E(H)|
|A| = O(m! logn)

m! =

O(log n). By Observation 6.10, this implies Eπ∈Π[Q(~e, π)] = EπA∼A[degH(πA)] = O(log n).

6.3.1 Proof of Lemma 6.11

We prove the following statement which we show suffices to prove Lemma 6.11.

Claim 6.13. Let π, π′ ∈ Π with π 6= π′, let ~P and ~P ′ respectively be (v, π)- and (v′, π′)-query-

paths both ending at ~e for some v, v′ ∈ V , and suppose that φ(π, ~P) = φ(π′, ~P ′) = σ. Then

|~P | 6= |~P ′|.

Let us first see how Claim 6.13 suffices to prove Lemma 6.11:

Proof of Lemma 6.11 via Claim 6.13. Let us take an arbitrary vertex σB in part B of graph

H. For any edge {πA, σB} in H, by construction of H there must be a unique (v, π)-query-

path ~P such that φ(π, ~P) = σ where here π, σ ∈ Π are the permutations corresponding to πA

and σB respectively. Let us define the label χ(πA, σB) of edge {πA, σB} to be the length |~P |

of this query-path ~P . Claim 6.13 essentially implies that all the edges of σB receive different

labels. On the other hand, if πA is a neighbor of σB and πA ∈ AL, then by definition (6.2) of

set L, χ(πA, σB) ≤ β. The uniqueness of the integer labels and the upper bound of β imply

together that σB can have at most β neighbors in AL. The proof of Lemma 6.11 is thus

complete.

We now turn to prove Claim 6.13.

Let π, π′, ~P , ~P ′, v, v′, σ be as defined in Claim 6.13 and assume for contradiction that

|~P | = |~P ′|. First observe that if in addition to their lengths, the edges traversed by the two

paths ~P , ~P ′ are also the same i.e., ~P = ~P ′, then by definition of the mapping φ, we have

φ(π, ~P) = φ(π′, ~P ′) iff π = π′ which contradicts the assumption π 6= π′ of Claim 6.13. So let

us assume that ~P 6= ~P ′ but |~P | = |~P ′|. This implies that the two paths must “branch” at

least once.

84

... ...

......

......
e1 = e′1

eb = e′b

e1 = e′1

eb = e′b

eb+1 eb+1 e′b+1e′b+1

P P ′

π π′v v

v′ v′

π(eb) = π′(eb+1)

(Claim 6.16)

Figure 6.1: On the right hand side, we have permutation π′ and query-path P ′ is high-

lighted. On the left hand side, we have permutation π and path P is highlighted. Our

arguments essentially show that eb+1 must belong to matching GMM(G, π′). We also show

that π′(eb+1) < π′(e′b). Therefore, EO(e′b+1, π
′) should terminate (returning FALSE) before

calling EO(e′b, π
′). This means P ′ cannot be a valid query-path in π′ and this is our desired

contradiction which proves Claim 6.13.

It would be convenient to define ~P = (~e1, ~e2, . . . , ~ek) and ~P
′

= (~e′1, ~e′2, . . . , ~e′k) to be

respectively the same as ~P = (~ek, . . . , ~e1) and ~P ′ = (~ek
′, . . . , ~e1

′) except that their edges are

traversed in the reverse direction. Since both ~P and ~P ′ end at ~e (by definition of query-

paths), both ~P and ~P
′

must start from ~e = ~e1 = ~e′1. Let (b+ 1) be the smallest index where

~eb+1 6= ~e′b+1. That is, we have e1 = e′1, . . . , eb = e′b and eb+1 6= e′b+1 (see Figure 6.1). Observe

that b+ 1 ≥ 2 since ~e1 = ~e′1 = ~e.

Let us make the following assumption that comes without loss of generality as we have

not distinguished π and π′ in any other way up to this point of the analysis.

Assumption 6.14. π(eb) ≤ π′(e′b).

Observation 6.15. It holds that π(e1) < π(e2) < . . . < π(ek) and π′(e′1) < π′(e′2) < . . . <

π′(e′k).

Proof. This holds because ~P is a query-path in π and ~P ′ is a query-path in π′. Recall that

query-paths correspond to recursions in the stack and Algorithm 1 only recurses on edges with

lower rank than the current edge. Hence the edges along a query path must be decreasing in

rank.

Claim 6.16. For any i ∈ {b+ 1, . . . , k}, π′(ei) = π(ei−1) and π(e′i) = π′(e′i−1).

85

Proof. First, since i ≥ b+ 1 ≥ 2, we have ei 6= e1. Therefore by definition of φ(π, ~P), which

rotates the ranks of π in the reverse direction of ~P (i.e., in direction of ~P), φ(π, ~P)(ei) =

π(ei−1). On the other hand, note that ei 6∈ P ′ since i ≥ b + 1 and P and P ′ branch after

edge eb = e′b — this implies that φ(π′, ~P ′)(ei) = π′(ei). Combined with our assumption that

φ(π, ~P) = φ(π′, ~P ′) = σ, this implies the desired equality π′(ei) = π(ei−1).

The second equality follows from essentially the same argument; we still state it for

completeness. We have φ(π′, ~P ′)(e′i) = π′(e′i−1) since ei 6= e1. Also, since e′i 6∈ P for i ≥ b+ 1,

we have φ(π, ~P)(e′i) = π(e′i). Thus to have φ(π, ~P) = φ(π′, ~P ′) = σ it is necessary that

π′(e′i−1) = π(e′i).

Claim 6.17. π′(eb+1) < π′(e′b).

Proof. From Claim 6.16 we know π′(eb+1) = π(eb). Combined with Assumption 6.14 that

π(eb) ≤ π′(e′b), this implies π′(eb+1) ≤ π′(e′b). The equality can be ruled out since π′ is a

permutation and distinct edges eb+1 and e′b cannot be assigned the same rank. As such,

π′(eb+1) < π′(e′b).

Claim 6.18. If π(f) 6= π′(f) for some edge f , then π(f) ≥ π(eb) and π′(f) ≥ π(eb). In

other words, the two permutations π and π′ are identical on all ranks smaller than π(eb).

Proof. If f 6∈ P ∪ P ′, then clearly π′(f) = π(f) = σ(f) since φ(π, ~P) = φ(π′, ~P ′) = σ and

φ only changes the ranks of edges along the query-path that it is given. So we can assume

f ∈ P ∪ P ′; there are therefore four possible scenarios:

Case (1) f ∈ {e1, . . . , eb−1}: For any i ∈ {2, . . . , b}, to have φ(π, ~P)(ei) = φ(π′, ~P ′)(ei),

it is necessary that π(ei−1) = π′(ei−1). Thus, in this case π(f) = π′(f).

Case (2) f = eb: We have π(f) = π(eb) since f = eb and we have π′(f) = π′(eb) ≥

π(eb) by Assumption 6.14. So the claim holds in this case.

Case (3) f ∈ {eb+1, . . . , ek}: We have π(f) > π(eb) in this case by Observation 6.15.

Furthermore, by Claim 6.16, π′(ei) = π(ei−1) for i ≥ b+ 1; thus π′(f) ∈ {π(eb), . . . , π(ek−1)}

in this case. By Observation 6.15, min{π(eb), . . . , π(ek−1)} = π(eb) and thus π′(f) ≥ π(eb).

So the claim holds in this case.

Case (4) f ∈ {e′b+1, . . . , e
′
k}: The proof of this case is similar to case (3). We

have π′(f) > π′(eb) ≥ π(eb) by Observation 6.15 and Assumption 6.14. On the other

hand, from Claim 6.16 we get π(e′i) = π′(e′i−1) for any i ≥ b + 1, which implies π(f) ∈

{π′(e′b), . . . , π′(e′k−1)}. By Observation 6.15 min{π′(e′b), . . . , π′(e′k−1)} = π′(e′b) and thus

86

π(f) ≥ π′(e′b). With π′(e′b) ≥ π(eb) of Assumption 6.14, we get π(f) ≥ π(eb). So the

claim holds in this case too and the proof is complete.

Claim 6.19. eb+1 ∈ GMM(G, π′).

Proof. Assume for the sake of contradiction that eb+1 6∈ GMM(G, π′). This means that eb+1

must be incident to an edge f ∈ GMM(G, π′) with π′(f) < π′(eb+1) = π(eb) (where recall

the last equality follows from Claim 6.16). Since π and π′ are identical for ranks smaller

than π(eb) by Claim 6.18, f ∈ GMM(G, π′) implies f ∈ GMM(G, π) as well. Using this

and combined with π(f) = π′(f) < π(eb), we show that ~P is not a valid query-path in

permutation π which is a contradiction. To see this, note that while running the edge oracle

EO(eb+1, π), we should call EO(f, π) before EO(eb, π) because π(f) < π(eb); moreover, since

f ∈ GMM(G, π), EO(eb+1, π) will immediately terminate and return FALSE without calling

EO(eb, π).

We are now ready to finalize the proof of Claim 6.13 by showing that the assumptions

above lead to a contradiction. The contradiction that we prove is that ~P ′ cannot be a valid

query-path in permutation π′. To see this, recall that during the execution of EO(e′b+1, π
′),

we have to call EO(eb+1, π
′) before EO(e′b, π

′) since by Claim 6.17 π′(eb+1) < π′(e′b). On the

other hand, by Claim 6.19 the answer to EO(eb+1, π
′) is TRUE and so EO(e′b+1, π

′) should

terminate immediately and return FALSE without calling EO(e′b, π
′). Therefore, ~P ′ is not a

valid query-path in π′ contradicting our assumption that |~P | = |~P ′| is possible. The proof of

Claim 6.13 is thus complete. As discussed at the start of Section 6.3.1, this also completes

the proof of Lemma 6.11.

6.3.2 Proof of Lemma 6.12

To prove Lemma 6.12 we first recall a parallel implementation of the randomized greedy

maximal matching algorithm and the bounds known for its round-complexity. For more

details see [59, 89].

Parallel Randomized Greedy MM: Given a graph G and a permutation π over its edge-

set, we repeat the following until G becomes empty: in parallel add any “local minimum”

edge e to the matching and remove its endpoints from the graph. An edge is local minimum

if its rank is smaller than that of all of its neighboring edges that remain in the graph.

87

It can be easily confirmed that the output of the algorithm above is exactly GMM(G, π).

We use ρ(G, π) to denote the round-complexity of the algorithm, i.e., the number of iterations

that it takes until the graph becomes empty.

It was shown in [59] that ρ(G, π) can be bounded for a random permutation byO(log2 n)

with high probability. This was improved to O(log n) in [89]:

Lemma 6.20 ([89]). Let π be a permutation chosen uniformly at random over the edge-set

of an n-vertex graph G. With probability at least 1− n−2, ρ(G, π) = O(log n).

We prove the following:

Claim 6.21. Let P be any query-path in G for permutation π, then ρ(G, π) ≥ b |P |2 c.

Claim 6.21 suffices to prove Lemma 6.12 as proved next.

Proof of Lemma 6.12 via Claim 6.21. For any permutation π ∈ U , by definition (6.2) there

is at least one query-path of length at least β+1 in permutation π. This implies by Claim 6.21

that ρ(G, π) ≥ bβ+1
2 c for any π ∈ U . If we set the constant c in β = c log n to be sufficiently

large, we can use Lemma 6.20 to bound the probability of this event by ≤ 1/n2. Thus,

|U |/|Π| ≤ 1/n2 which implies |U | ≤ |Π|/n2 = m!/n2. The lemma follows noting that |AU | =

|U | due to the one-to-one correspondence between vertices AU and permutations in U that

we discussed in Section 6.3.1.

Proof of Claim 6.21. Let P = (ek, . . . , e1) be our query-path and recall from Observation 6.15

that π(ek) > . . . > π(e1). For any edge e, we use ρ(e) to denote the round of the parallel

implementation in which edge e gets removed from the graph according to permutation π.

We show that for any i ∈ {2, . . . , k − 1}, ρ(ei) ≥ ρ(ei−2) + 1. By a simple induction, this

implies ρ(ek−1) ≥ bk/2c and so ρ(G, π) ≥ bk/2c.

Suppose for the sake of contradiction that ρ(ei) < ρ(ei−2) + 1 (or equivalently ρ(ei) ≤

ρ(ei−2)) for some 2 ≤ i ≤ k − 1. This means that at the start of round ρ(ei) both ei and

ei−2 are still in the graph. Observe that if ρ(ei−1) < ρ(ei), then during round ρ(ei−1) at

least one of the endpoints of ei−1 must be matched and so either ei or ei−2 (or both) should

also be removed from the graph which contradicts ρ(ei−1) < ρ(ei) ≤ ρ(ei−2). Therefore

ρ(ei−1) ≥ ρ(ei) and so ei−1 is also still in the graph along with ei and ei−2 at the start of

round ρ(ei). This means that ei is not a local minimum during round ρ(ei) and so it is

removed in this round because some other edge f 6= ei joins the matching. Note also that

f 6= ei−1 since ei−1 is incident to ei−2 and is not a local minimum.

88

. . .

1

2

3

4

5

6

n− 3

n− 2

n− 1

n

(assume n is even)

Figure 6.2: In this permutation, all the vertices with odd ranks join the MIS in round one and the
whole graph becomes empty immediately, hence the parallel depth is 1. However, the query process
for the vertex with rank n first goes through all even nodes, thus has length ≥ n/2.

Let x be the vertex incident to both ei−1 and ei and let y be the other endpoint of ei

incident to ei+1 (note that since i ≤ k − 1 edge ei+1 should exist). Since f is a neighbor of

ei, it is either connected to x or y. We show that both cases lead to contradictions.

Case (1) f connected to y: Noting that π(f) < π(ei) since π(f) is a local minimum

when ei still is in the graph, we get that EO(ei+1, π) calls EO(f, π) before EO(ei, π). But

because f ∈ GMM(G, π), EO(ei+1, π) would not continue to call EO(ei, π) and P cannot be

a valid query-path.

Case (2) f connected to x: Since f is a local minimum when ei−1 still exists in the

graph, π(f) < π(ei−1). This implies that EO(ei, π) should call EO(f, π) before EO(ei−1, π).

But because f ∈ GMM(G, π), EO(ei, π) would not continue to call EO(ei−1, π) and so, again,

P cannot be a valid query-path.

The contradictions above rule out the possibility of our assumption that ρ(ei) <

ρ(ei−2) + 1 and so we indeed get ρ(ei) ≥ ρ(ei−2) + 1 for all 2 ≤ i ≤ k − 1. As discussed, this

implies ρ(G, π) ≥ bk/2c completing the proof.

Remark 6.22. Claim 6.21 shows that for any permutation π, the maximum query length

in the random greedy maximal matching algorithm is asymptotically upper bounded by the

parallel round-complexity of this algorithm for the same permutation. One may wonder if

this also holds for the randomized greedy maximal independent set (MIS) algorithm which

processes the vertices in a random order and adds each encountered feasible vertex to the

independent set greedily (see [154, 59]). Interestingly, the answer turns out to be negative.

See Figure 6.2.

89

6.4 The Final Algorithms for the Adjacency List Query Model

In this section, we show how the oracle analysis of Section 6.3 can lead to our claimed bounds

of Theorems 6.1 and 6.2 in the adjacency list query model.

As before, let G = (V,E) be an arbitrary graph with n vertices, m edges, maximum

degree ∆, and average degree d̄. Having defined and analyzed the oracle calls of the GMM

algorithm in Section 6.3, we now employ the standard recipe of the literature in estimating

the size of MCM or MVC. We sample a number of random vertices and simulate the vertex

oracle of Algorithm 2 on each. If our sample size is sufficiently large, the fraction of matched

sampled vertices is a good estimate of the fraction of vertices in the graph that are matched

by GMM. To formalize this, we first show how to simulate the vertex and edge oracles of

Section 6.3 using adjacency list queries.

First, to generate the random permutation π, one can for each edge e sample an in-

dependent rank σ(e) which is a real in [0, 1] chosen uniformly at random, and then obtain

π by sorting the edges in the increasing order of their ranks. This way we can expose the

random permutation “on the fly” only where it is needed, avoiding the Ω(m) time needed for

generating it for all the edges. Another challenge remains though. A trivial simulation of the

edge oracle EO(e, π) (Algorithm 1) is to generate the rank σ(e′) of all edges e′ incident to e

upon calling EO(e, π). The problem with this approach is that the total number of queries in

answering VO(v, π) can be as large as O(T (v, π)∆) whereas we need a bound of Õ(T (v, π))

for our final results. Here T (v, π) as defined in Section 6.3 is the number of edges on which

the edge oracle is recursively called during the execution of VO(v, π) and the O(∆) factor

comes from querying up to O(∆) neighbors of each such edge. To get rid of this ∆ factor,

the idea is to expose the neighbors of each edge in “batches,” only when they are needed.

This leads to the following bound, a variant of which was first proved by [136]:

Lemma 6.23 ([136]). Let v be an arbitrary vertex in a graph G = (V,E). There is an

algorithm that draws a random permutation π over E, and determines whether v is matched

in GMM(G, π) in time Õ(T (v, π)+1) having query access to the adjacency lists. The algorithm

succeeds w.h.p.

We note that Lemma 6.23 is slightly stronger than its variant proved in [136] where the

produced answers were only approximately close, in total variation distance, to the actual

distribution. We observe that this can be turned to an exact guarantee by using the exact

sublinear time binomial samplers of [84, 63]. For a proof of Lemma 6.23 see [26].

90

6.4.1 Proof of Theorem 6.1: Multiplicative Approximation

We assume, w.l.o.g., in this section that the graph has no singleton vertices, and that the

average degree d̄ and maximum degree ∆ are given. Note that we can simply query the

degree of every vertex in the graph, discard all the singleton vertices, and compute d̄ and ∆

for the rest of the vertices in O(n) time and queries as allowed by Theorem 6.1. Hence, the

assumption comes w.l.o.g. Having this assumption, the rest of the algorithm of this section

runs in Õ(∆/ε2) time.

As discussed, the general idea is to take k random vertices and run the greedy oracle

of Lemma 6.23 on them to see what fraction of them get matched. For the guarantee of

Theorem 6.1, it turns out that setting k = Θ̃(∆/d̄ε2) suffices to see sufficiently many matched

vertices. The following simple claim plays a crucial role in arguing that these many samples

suffice for our purpose:

Claim 6.24. For any n-vertex graph G of max degree ∆ and average degree d̄, µ(G) ≥ nd̄
4∆ .

Proof. By Vizing’s theorem, any graph G of maximum degree ∆ has a proper (∆ + 1)-edge-

coloring. Since the m edges are colored only via (∆ + 1) colors, there must be a color that

is assigned to ≥ m/(∆ + 1) edges. Since the edges of any color form a matching, the graph

must have a matching of size ≥ m/(∆ + 1). Noting that d̄ = 2m/n, we get:

µ(G) ≥ m

∆ + 1
=

nd̄/2

∆ + 1
≥ nd̄

4∆
.

Our starting point is the following Algorithm 8:

Algorithm 8: An algorithm used for Theorem 6.1, given parameter ε > 0.

1 k ← 128 · 24(∆ lnn)/(ε2d̄). ; // Note that d̄ and ∆ are known to the algorithm.

2 Sample k vertices v1, . . . , vk (with replacement) independently and uniformly from V .
3 For each i ∈ [k] run the algorithm of Lemma 6.23 on vertex vi. For each i ∈ [k] let Xi be

the indicator of the event that vi is matched once we run Lemma 6.23 for vi.
4 Let X ←

∑k
i=1Xi and let f ← X/k be the fraction of vertices v1, . . . , vk that get

matched.
5 Let µ̃← (1− ε

2)fn/2 and let ν̃ ← (1 + ε
2)fn.

6 return µ̃ as the estimate for µ(G) and return ν̃ as the estimate for ν(G).

We start by analyzing the approximation ratio of Algorithm 8:

Lemma 6.25. Let µ̃ and ν̃ be the outputs of Algorithm 8. With probability 1− 2n−4,

(1− ε)1

2
µ(G) ≤ µ̃ ≤ µ(G) & ν(G) ≤ ν̃ ≤ (1 + ε)2ν(G).

91

Proof. Let us now measure the expected value of our estimates. From our definition, Xi = 1

if and only if a random vertex vi for a random permutation π is matched in GMM(G, π).

Since the number of vertices matched in a matching is twice the size of the matching, this

implies that

E[Xi] = Pr
vi,π

[Xi = 1] =
2 Eπ |GMM(G, π)|

n
.

As such,

E[X] = E[X1 + . . .+Xk] =
2kEπ |GMM(G, π)|

n
. (6.3)

Since X is sum of independent Bernoulli random variables, by the Chernoff bound (Proposi-

tion 2.1):

Pr
[
|X −E[X]| ≥

√
12 E[X] lnn

]
≤ 2 exp

(
−12 E[X] lnn

3 E[X]

)
= 2/n4. (6.4)

Noting from Algorithm 8 that f · n = Xn/k, inequality (6.4) implies that with probability

1− 2/n4,

f · n ∈
(E[X]±

√
12 E[X] lnn)n

k

=
E[X]n

k
±
√

12 E[X]n2k−2 lnn

= 2 E
π
|GMM(G, π)| ±

√
24 E

π
|GMM(G, π)|nk−1 lnn (By (6.3).)

= 2 E
π
|GMM(G, π)| ±

√
Eπ |GMM(G, π)|ε2nd̄

128∆
. (Since k = 128 · 24∆ lnn

ε2d̄
.)

Note that µ(G) ≤ 2 Eπ |GMM(G, π)| and also recall from Claim 6.24 that µ(G) ≥ nd̄
4∆ . As

such, we have nd̄
4∆ ≤ 2 Eπ |GMM(G, π)|. Combined with the range above, with probability

1− 2/n4 we have

f · n ∈ 2 E
π
|GMM(G, π)| ±

√
(Eπ |GMM(G, π)|)2ε2

16
=
(

2± ε

4

)
E
π
|GMM(G, π)|.

Since µ̃ = (1− ε
2)f · n/2 and ν̃ = (1 + ε

2)f · n, this means

(1− ε) E
π
|GMM(G, π)| ≤ µ̃ ≤ E

π
|GMM(G, π)|, (6.5)

2 E
π
|GMM(G, π)| ≤ ν̃ ≤ (1 + ε)2 E

π
|GMM(G, π)|. (6.6)

Next, observe that 1
2µ(G) ≤ Eπ |GMM(G, π)| ≤ µ(G) since a maximal matching is a 2-

approximate maximum matching, and ν(G) ≤ 2 Eπ |GMM(G, π)| ≤ 2ν(G) since the set of

vertices of a maximal matching is a 2-approximate minimum vertex cover. These, plugged

into (6.5) and (6.6) give the desired inequalities of the lemma, completing the proof.

92

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. By Theorem 3.2, for a random vertex v ∈ V , Ev,π[T (v, π)] = O(d̄ ·

log n). As such, for each vertex vi of Algorithm 8, the algorithm of Lemma 6.23 takes

Õ(d̄+ 1) expected time to determine whether it is matched in a random permutation. Since

we run this algorithm for k = Õ(∆/ε2d̄) vertices, the expected running time of Algorithm 8

is Õ(∆/ε2d̄) · Õ(d̄ + 1) = Õ(∆/ε2) where the latter equality crucially uses our assumption

of the start of the section that there are no singleton vertices in the graph, which implies

1/d̄ = O(1).

To achieve the high probability bound on the time-complexity, we run Θ(log n) in-

stances of Algorithm 8 in parallel and return the output of the instance that terminates first.

By Markov’s inequality, each instance terminates in time Õ(∆/ε2) with a constant proba-

bility. As such, at least one of the instances terminates in Õ(∆/ε2) time with probability

1 − 1/ poly(n). Recall also that we spent O(n) time at the start of the section to throw

away singleton vertices and compute d̄ and ∆. As such, the total time complexity is, w.h.p.,

O(n)+ Õ(∆/ε2). On the other hand, since the approximation ratio guarantee of Lemma 6.25

holds with probability 1 − 1/ poly(n) for each instance, all O(log n) instances (including

the one that terminates first) achieve the claimed approximation with a high probability of

1− 1/poly(n).

6.4.2 Proof of Theorem 6.2: Multiplicative-Additive Approximation

The algorithm we use for Theorem 6.2 is similar to Algorithm 8 for Theorem 6.1 except that

the additive εn error of Theorem 6.2 allows us to take Õ(1/ε2) sample vertices instead of

Õ(∆/ε2d̄) as in Algorithm 8. Formally, we use the following Algorithm 9:

Algorithm 9: An algorithm used for Theorem 6.2, given parameter ε > 0.

1 k ← 16 · 24 lnn/ε2.
2 Sample k vertices v1, . . . , vk (with replacement) independently and uniformly from V .
3 For each i ∈ [k] run the algorithm of Lemma 6.23 on vertex vi. For each i ∈ [k] let Xi be

the indicator of the event that vi is matched once we run Lemma 6.23 for vi.
4 Let X ←

∑k
i=1Xi and let f ← X/k be the fraction of vertices v1, . . . , vk that get

matched.
5 Let µ̃← fn

2 −
ε
2n and let ν̃ ← fn+ ε

4n.
6 return µ̃ as the estimate for µ(G) and return ν̃ as the estimate for ν(G).

Lemma 6.26. Let µ̃ and ν̃ be the outputs of Algorithm 9. With probability 1− 2n−4,

1

2
µ(G)− εn ≤ µ̃ ≤ µ(G) & ν(G) ≤ ν̃ ≤ 2ν(G) + εn.

93

Proof. Observe that inequalities (6.3) and (6.4) that we proved for Algorithm 8 hold for

Algorithm 9 too for exactly the same reasons. Particularly, inequality (6.4) implies that with

probability 1− 2/n4,

f · n ∈
(E[X]±

√
12 E[X] lnn)n

k

=
E[X]n

k
±
√

12 E[X]n2k−2 lnn

= 2 E
π
|GMM(G, π)| ±

√
24 E

π
|GMM(G, π)|nk−1 lnn (By (6.3).)

= 2 E
π
|GMM(G, π)| ±

√
E
π
|GMM(G, π)|ε2n/16. (Since k = 16 · 24 lnn

ε2
.)

∈ 2 E
π
|GMM(G, π)| ± εn/4. (Since Eπ |GMM(G, π)| ≤ n.)

Combined with µ̃ = fn
2 −

ε
2n and ν̃ = fn+ ε

4n, this implies that, w.h.p.,

E
π
|GMM(G, π)| − εn ≤ µ̃ ≤ E

π
|GMM(G, π)|, (6.7)

2 E
π
|GMM(G, π)| ≤ ν̃ ≤ 2 E

π
|GMM(G, π)|+ εn. (6.8)

Plugging 1
2µ(G) ≤ Eπ |GMM(G, π)| ≤ µ(G) and ν(G) ≤ 2 Eπ |GMM(G, π)| ≤ 2ν(G) into (6.7)

and (6.8) completes the proof.

Proof of Theorem 6.2. As discussed in the proof of Theorem 6.1, each call to Lemma 6.23

for a randomly chosen vertex takes Õ(d̄+ 1) expected time. Since k = Õ(1/ε2), Algorithm 9

takes Õ((d̄+ 1)/ε2) expected time in total.

To achieve the high probability bound on the time-complexity, as in the proof of The-

orem 6.1, we run Θ(log n) instances of Algorithm 9 in parallel and return the output of

the instance that terminates first. By Markov’s inequality, each instance terminates in time

Õ((d̄+ 1)/ε2) with a constant probability. As such, at least one of the instances terminates

in Õ((d̄+ 1)/ε2) time with probability 1− 1/poly(n). On the other hand, since the approxi-

mation guarantee of Lemma 6.26 holds with probability 1− 1/ poly(n) for each instance, all

O(log n) instances (including the one that terminates first) achieve a (2, εn)-approximation

with probability 1− 1/ poly(n).

6.5 The Final Algorithm for the Adjacency Matrix Query Model

In this section, we prove Theorem 6.3. The first challenge is that Lemma 6.23 is based on

adjacency list queries. As such, we need a way of implementing these adjacency list queries

in the adjacency matrix model. To do this, we transform the input graph G to another graph

94

Graph G

V

Graph G′

V1 V2 V3 V4 V5 V6 = V`

U1

U2

U3

U4

1

2

3

4

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44

15

25

35

45

16

26

36

46

Figure 6.3: An example of graph G′ constructed from G. Here the graph G has n = 4 vertices.

The illustration is drawn for ` = 6 and (for simplicity) for s = |Ui| = 5. Note that all the

vertices in V1 and V3 ∪ . . . ∪ V`−1 have degree exactly n = 4, the vertices in V2 have degree

exactly n + s = 9, the vertices in U1, . . . , Un have degree exactly one, and the vertices in V`

have varying degrees.

G′ where (most) adjacency list queries to G′ can be implemented efficiently via adjacency

matrix queries to G and at the same time the oracle calls on G′ suffice to approximate the

size of MCM and MVC for G.

We note that another such reduction was given before by [136]. However, the reduction

of [136] is not applicable in our case since it, crucially, adds parallel edges and self-loops to G′

while Theorem 3.2 is proved for simple graphs. Our reduction is, in fact, completely disjoint

from that of [136] and uses the properties of RGMM more aggressively.

We first make a mild assumption that ε in Theorem 6.3 is at least 1/n, noting that

otherwise Õ(n/ε3) is large enough to query the whole graph, making Theorem 6.3 trivial.

Let us now formalize the construction of graph G′ = (V ′, E′) from the input graph

G = (V,E) (see Figure 6.3 for an illustration). Throughout this section, we continue to use n

to denote the number of vertices in the original graph G. Define ` := C log n for a sufficiently

large constant C and let s := 10n/ε. The vertex-set V ′ of G′ is defined as follows:

• For any i ∈ [`] define set Vi = {1i, 2i, . . . , ni} of size n.

• For any i ∈ [n] define set Ui = {1′i, 2′i, . . . , s′i} of size s.

• The vertex set V ′ of G′ is set (V1 ∪ . . .∪ V`)∪ (U1 ∪ . . .∪Un). Note, in particular, that

G′ has n′ := |V ′| = `n+ ns = Θ(n2/ε) vertices.

We formalize the edge-set E′ of G′ by describing the adjacency-list of each vertex v ∈ V ′

(while being careful that for each edge (u, v) ∈ E′, both u and v appear in each other’s

95

adjacency lists). Suppose that the vertices of graph G are labeled as V = {1, . . . , n}. The

edge-set of G′ is as follows:

1. For any vertex v1 ∈ V1 and any i ∈ [degG′(v)] = [n]: If (v, i) ∈ E then the i-th neighbor

of v1 is vertex i1 ∈ V1, otherwise it is vertex i2 ∈ V2. Note, in particular, that with this

construction G′[V1] is isomorphic to G.

2. For any vertex vj ∈ Vj with even j ∈ {4, . . . , ` − 1} and any i ∈ [degG′(vj)] = [n]: If

(v, i) ∈ E then the i-th neighbor of vj is ij+1 ∈ Vj+1, otherwise it is ij−1 ∈ Vj−1.

3. For any vertex vj ∈ Vj with odd j ∈ {3, . . . , ` − 1} and any i ∈ [degG′(vj)] = [n]: If

(v, i) ∈ E then the i-th neighbor of vj is ij−1 ∈ Vj−1, otherwise it is ij+1 ∈ Vj+1.

4. For any vertex v2 ∈ V2 and any i ∈ [degG′(v)] = [n + s]: If i ≤ n and (v, i) ∈ E, the

i-th neighbor of v2 is i3 ∈ V3; If i ≤ n and (v, i) 6∈ E, then the i-th neighbor of v2 is

i1 ∈ V1; finally if i > n then the i-th neighbor of v2 is v′i−n ∈ Uv.

5. For vertices in V`, we assume that their adjacency lists are sorted in an arbitrary way,

say in the increasing order of vertex ID’s. Note that all the edges of V` have their other

endpoint in V`−1 and are already defined above.

6. Any vertex in Uj has exactly one neighbor, and it is vertex j2 ∈ V2.

The following observation follows immediately from the construction above and the

way neighbors of each vertex are ordered in their adjacency lists:

Observation 6.27. For any vertex v ∈ V ′ \ V`, degG′(v) does not depend on the edges in G

and is, therefore, known a priori with zero queries to G. Furthermore, for any v ∈ V ′ \ V`
and any i ∈ [degG′(v)] one can determine the i-th edge of v in its adjacency list of G′ with

at most one adjacency matrix query to G.

Proof. The construction already fixes the degree of any vertex v ∈ V ′ \ V` and so the first

part of the observation is trivial. For the second part, note that for any vertex vj ∈ Vj with

j ∈ [`− 1] and any i ∈ [degG′(vj)], querying whether (v, i) ∈ E suffices to determine the i-th

edge of vj by the construction. The vertices in Uj , on the other hand, have only one neighbor

j2 and this can be answered with zero queries to G.

By Observation 6.27, adjacency list queries to all vertices of G′, except for those in

V`, can be answered very efficiently, each with just one query to the adjacency matrix of G.

However, adjacency list queries to V` are still costly. In fact, if the algorithm queries the

96

adjacency list or the degree of a vertex v` ∈ V`, we immediately terminate the process and

output FAIL. Fortunately, if we start the vertex oracle of Lemma 6.23 from a vertex in V1,

it can be shown that it is highly unlikely for the process to require such queries:

Claim 6.28. Let v ∈ V1 and suppose that we run the algorithm of Lemma 6.23 on v. With

probability 1 − 1/ poly(n), the algorithm does not query the adjacency list nor the degree of

any vertex in V`.

Proof. The crucial observation is that graph G′ is constructed such that the distance between

a vertex in V1 and a vertex in V` is at least `− 1. On the other hand, recall from Claim 6.21

that every query path is asymptotically bounded by the algorithm’s parallel round-complexity,

which by Lemma 6.20, is O(log |V ′|) with probability 1−1/ poly(|V ′|). Since |V ′| = n`+ns =

Θ(n log n+ n2/ε) = Θ(n2/ε) and ε > 1
n (assumed at the start of the section), the maximum

query path has size O(log(n2/ε)) = O(log n) with probability 1− 1/ poly(n).

This means that if the constant C in ` = C log n is large enough, a query process

starting from V1, with probability 1 − 1/ poly(n) does not reach V`. Hence, Lemma 6.23,

which implements the oracle for a random permutation, will not query the adjacency list nor

the degree of any vertex in V` if the starting vertex is in V1, with probability 1−1/ poly(n).

Observe that for Claim 6.28 to be applicable, we have to start our queries from the

vertices in V1 and not any vertex of G′. Claim 6.29 below shows that if we pick a random

vertex from V1 instead of the whole vertex-set V ′, the expected query complexity is still small.

We use TG′(v, π) instead of T (v, π) (defined in Section 6.3 and used in Lemma 6.23) to

emphasize that we run RGMM on graph G′ and not G in this section.

Claim 6.29. Let π be a random permutation over the edge-set E′ of G′. For a vertex v

chosen uniformly at random from V1 and independently from π,

E
v∼V1,π

[TG′(v, π)] = Õ(n/ε).

Proof. By the construction, graph G′ has |E′| = O(n2` + ns) = Θ̃(n2/ε) edges and |V ′| =

n` + ns = Θ(n2/ε) vertices. Applying Theoroem 3.2, for a vertex v ∈ V ′ chosen uniformly

at random, we get

E
v∼V ′,π

[TG′(v, π)] = O

(
|E′|
|V ′|

log |V ′|
)
.

Instead of querying a random vertex v ∈ V ′, suppose that we sum over all of them. This

97

gives: ∑
v∈V ′

E
π

[TG′(v, π)] = |V ′| · E
v∼V ′,π

[TG′(v, π)] = O
(
|E′| log |V ′|

)
= Õ(n2/ε). (6.9)

Finally, since |V1| = n, for a vertex v chosen uniformly at random from V1, we have

E
v∼V1,π

[TG′(v, π)] ≤

(∑
v∈V ′

E
π

[TG′(v, π)]

)
/|V1|

(6.9)
= Õ(n2/ε)/n = Õ(n/ε).

Now that we know queries starting from a random vertex in V1 can be implemented

efficiently in Õ(n/ε) expected time, the question is how can we use these queries to get our

estimators for the size of maximum matching and minimum vertex cover of G.

For any permutation π over E′, let us define

M1(π) := GMM(G′, π) ∩ (V1 × V1)

to be the set of edges in matching GMM(G′, π) with both endpoints in V1. The following

Claim 6.30 shows that the expected value of M1(π) for a random permutation π can be used

for approximating both maximum matching and the minimum vertex cover of G.

The idea behind Claim 6.30 is as follows. Note that by construction, G′[V1] is isomor-

phic to G and so for any π, there is a matching in G that corresponds to M1(π). However,

the vertices in V1 can also be matched to the vertices in V2 in graph G′, and so M1(π) is

not necessarily a maximal matching of G′[V1]. The key insight, however, is that the vast

majority of vertices v2 ∈ V2 will actually be matched to their neighbors in Uv in a RGMM

of G′. Hence, M1(π) for a random permutation π is indeed close to a maximal matching of

G′[V1] and its size can be used to approximate both the size of MCM and that of the MVC

of G. Formally:

Claim 6.30. It holds that

1

2
µ(G)− ε

20
n ≤ E

π
|M1(π)| ≤ µ(G) & ν(G)− ε

10
n ≤ 2 E

π
|M1(π)| ≤ 2ν(G).

Proof. Let us use B1(π) to denote the set of vertices in V1 that are matched to V2 in

GMM(G′, π). We first show that for every permutation π over E′, it holds that

1

2
(µ(G)− |B1(π)|) ≤ |M1(π)| ≤ µ(G) & ν(G)− |B1(π)| ≤ 2|M1(π)| ≤ 2ν(G). (6.10)

For the first inequality, observe that M1(π) is a matching of G′[V1] and G′[V1] is iso-

morphic to G by the construction; thus, clearly |M1(π)| ≤ µ(G).

98

For the second inequality, observe that M1(π) is a maximal matching of G′[V1 \B1(π)]

which is isomorphic to G[V \B1(π)]. Since a maximal matching is at least half the size of a

maximum matching, we get |M1(π)| ≥ 1
2µ(G[V \B1(π)]) ≥ 1

2(µ(G)− |B1(π)|).

For the third inequality, note that since M1(π) is a maximal matching of G′[V1\B1(π)],

the set of vertices matched by it covers all edges in G′[V1 \ B1(π)]. Adding the vertices in

B1(π) to this set, we cover all edges in G′[V1]. Hence ν(G′[V1]) ≤ 2|M1(π)| + |B1(π)|. The

inequality then follows from G′[V1] being isomorphic to G.

For the fourth inequality, note that since M1(π) is a matching in G′[V1] and each vertex

can cover at most one edge of it, we have |M1(π)| ≤ ν(G′[V1]). Given that G′[V1] is isomorphic

to G, we thus get |M1(π)| ≤ ν(G). Multiplying through by a factor of 2 and adding |B1(π)|

to both sides, we get 2|M1(π)|+ |B1(π)| ≤ 2ν(G) + |B1(π)|.

Now, observe that in any permutation π, if the lowest rank neighbor of a vertex v2 ∈ V2

is connected to Uv, then this edge is in matching GMM(π) since the vertices in Uv have degree

exactly one. Moreover, since each vertex v2 ∈ V2 has degree exactly n + s and s of these

neighbors are to Uv, the minimum rank edge of v2 is indeed connected to Uv with probability

s
n+s = 10n/ε

n+10n/ε ≥ 1− ε/10. As such the number of vertices in V2 that are matched to V1 is at

most ε
10 |V2| = ε

10n in expectation taken over π. This, in turn, implies that Eπ |B1(π)| ≤ ε
10n.

Taking expectation over a random π in (6.10) and plugging this upper bound for Eπ |B1(π)|

proves the claim.

Finally, the algorithm we use for Theorem 6.3 is formalized below as Algorithm 10.

Algorithm 10: An algorithm used for Theorem 6.3, given parameter ε > 0.

1 Let G′ = (V ′, E′) be the graph described above (we do not explicitly construct G′ here).
2 k ← 16 · 24 lnn/ε2.

3 Sample k vertices v1, . . . , vk (with replacement) independently and uniformly from V1.
4 For each i ∈ [k] run the algorithm of Lemma 6.23 on vertex vi, for graph G′. Let Xi be

the indicator of the event that vi is matched to another vertex in V1.

5 Let X ←
∑k

i=1Xi and let f ← X/k be the fraction of v1, . . . , vk that get matched to V1.

6 Let µ̃← fn
2 −

ε
2n and ν̃ ← fn+ ε

2n.
7 return µ̃ as the estimate for µ(G) and return ν̃ as the estimate for ν(G).

Let us analyze the approximation ratio of Algorithm 10.

Lemma 6.31. Let µ̃ and ν̃ be the outputs of Algorithm 10. With probability 1− 2n−4,

1

2
µ(G)− εn ≤ µ̃ ≤ µ(G) & ν(G) ≤ ν̃ ≤ 2ν(G) + εn.

Proof. Let us now measure the expected value of our estimates. From our definition, Xi = 1 if

and only if a random vertex vi ∈ V1 for a random permutation π is matched to another vertex

99

of V1 in GMM(G′, π). Recall that we defined M1(π) to be the set of edges in GMM(G′, π) ∩

(V1 × V1). Combined with the fact that the number of vertices matched in a matching is

twice the size of the matching, this implies that

E[Xi] = Pr
vi,π

[Xi = 1] =
2 Eπ |M1(π)|
|V1|

=
2 Eπ |M1(π)|

n
.

As such,

E[X] = E[X1 + . . .+Xk] =
2kEπ |M1(π)|

n
. (6.11)

Since X is sum of independent Bernoulli random variables, by the Chernoff bound (Proposi-

tion 2.1):

Pr
[
|X −E[X]| ≥

√
12 E[X] lnn

]
≤ 2 exp

(
−12 E[X] lnn

3 E[X]

)
= 2/n4. (6.12)

Noting from Algorithm 10 that f · n = Xn/k, inequality (6.12) implies that with probability

1− 2/n4,

f · n ∈
(E[X]±

√
12 E[X] lnn)n

k

=
E[X]n

k
±
√

12 E[X]n2k−2 lnn

= 2 E
π
|M1(π)| ±

√
24 E

π
|M1(π)|nk−1 lnn (By (6.11).)

= 2 E
π
|M1(π)| ±

√
E
π
|M1(π)|ε2n/16 (Since k = 16 · 24 lnn

ε2
.)

∈ 2 E
π
|M1(π)| ± εn

4
. (Since Eπ |M1(π)| ≤ |V1| = n.)

Combined with 1
2µ(G)− ε

20n ≤ Eπ |M1(π)| ≤ µ(G) from Claim 6.30, and µ̃ = fn
2 −

ε
2n,

the range above for fn implies 1
2µ(G)− εn < µ̃ < µ(G).

Combined with ν(G)− ε
10n ≤ 2 Eπ |M1(π)| ≤ 2ν(G) from Claim 6.30 and ν̃ = fn+ ε

2n,

the range above for fn implies ν(G) < ν̃ < 2ν(G) + εn.

Proof of Theorem 6.3. By Claim 6.29 each call to Lemma 6.23 for a random vertex from V1

leads to Õ(n/ε) adjacency list queries to G′. By Claim 6.28, with probability 1− 1/ poly(n),

none of these calls leads to querying the adjacency list or degree of a vertex in Vk. Hence,

by Observation 6.27, each of these adjacency list queries to G′, can be implement with one

adjacency matrix query to G in O(1) time. The total expected number of adjacency matrix

queries to G and the time-complexity of the algorithm, is therefore, k · Õ(n/ε) = Õ(n/ε3).

To achieve the high probability bound on the time-complexity, as in the proofs of Theo-

rems 6.1 and 6.2, we run Θ(log n) instances of Algorithm 10 in parallel and return the output

100

of the instance that terminates first. By Markov’s inequality, each instance terminates in

time Õ(n/ε3) with a constant probability. As such, at least one of the instances terminates

in Õ(n/ε3) time with probability 1 − 1/poly(n). On the other hand, since the approxima-

tion guarantee of Lemma 6.31 holds with probability 1 − 1/ poly(n) for each instance, all

O(log n) instances (including the one that terminates first) achieve a (2, εn)-approximation

with probability 1− 1/ poly(n).

101

Part III

Dynamic Algorithms

Chapter 7

Fully Dynamic Maximal Independent Set

A maximal independent set (MIS) is another fundamental graph property with several theo-

retical and practical applications. It is one of the most well-studied problems in distributed

and parallel settings following the seminal works of [126, 6]. MIS has also been studied in

a variety of other models and has diverse applications such as approximating matching and

vertex cover [133, 154], graph coloring [126, 122], clustering [3], leader-election [79], and many

others.

In this chapter, we consider MIS in fully-dynamic graphs. The graph is updated via

both edge insertions and deletions and the goal is to maintain an MIS by the end of each

update. Dynamic graphs constitute an active area of research and have seen a plethora of

results over the past two decades. The MIS problem in dynamic graphs has also attracted

a significant attention, especially recently [64, 14, 101, 81, 137, 17]. We first overview these

works below and then describe our contribution.

Related Work: In static graphs with m edges, a simple greedy algorithm can find an MIS

in O(m) time. As such, one can trivially maintain MIS by recomputing it from scratch after

each update, in O(m) time. In a pioneering work, Censor-Hillel, Haramaty, and Karnin [64]

presented a round-efficient randomized algorithm for MIS in dynamic distributed networks.

Implementing the algorithm of [64] in the sequential setting—the focus of this chapter—

requires Ω(∆) update-time (see [64, Section 6]) where ∆ is the maximum-degree in the graph

which can be as large as Ω(n) or even Ω(m) for sparse graphs. Improving this bound was

one of the major problems the authors left open. Later, in a breakthrough, Assadi, Onak,

Schieber, and Solomon [14] presented a deterministic algorithm with O(m3/4) update-time;

thereby improving the O(m) bound for all graphs. This result was further improved in a

series of subsequent papers [101, 81, 137, 17]. The current state-of-the-art is a randomized

103

algorithm due to Assadi et al. [17], which requires Õ(min{
√
n,m1/3}) amortized update-time

in n-vertex graphs.

Our Contribution: In this chapter, we show that it is possible to maintain an MIS of

fully-dynamic graphs in polylogarithmic time.1 This exponentially improves over the prior

algorithms, which all have polynomial update-time on general graphs. Our algorithm is

randomized and requires the standard oblivious adversary2 assumption (as do all previous

randomized algorithms).

Theorem 7.1 (main result). There is a data structure to maintain an MIS against an

oblivious adversary in a fully-dynamic graph that, per update, takes O(log2 ∆ · log2 n)

expected time. Furthermore, the number of adjustments to the MIS per update is O(1) in

expectation.

Since our algorithm bounds the expected time per update without amortization, we

can use it as a black-box in a framework of Bernstein et al. [53, Theorem 1.1] to also get a

worst-case guarantee w.h.p. (We note that this comes at the cost of losing the guarantee on

the adjustment-complexity.)

Corollary 7.2. There is a data structure to maintain an MIS against an oblivious adversary

in a fully-dynamic graph that w.h.p. has O(log2 ∆ · log4 n) worst-case update-time.

To prove Theorem 7.1, we give an algorithm that carefully simulates RGMIS (see

Section 3.2 for its definition and properties). We fix the random order over the vertices at

the start of the algorithm. Once this order is fixed, the GMIS of becomes unique for any

given edge-set. This is particularly useful for dynamic graphs as it makes the output history-

independent. That is, the order of edge insertions and deletions by the adversary cannot

affect the reported MIS. See [64, Section 5] for more discussion on this property.

We note that maintaining RGMIS has been done before by Censor-Hillel et al. [64] and

also partially by Assadi et al. [17] who combined it with another deterministic algorithm.

However, as discussed above, both these algorithms require a polynomial update-time. The

1Independently and currently with our work, Chechik and Zhang [68] also obtained an algorithm with

essentially the same guarantee.
2In the standard oblivious adversarial model, the adversary can feed in any sequence of edge updates and

is aware of the algorithm to be used, but is unaware of the random-bits used by the algorithm. Equivalently,

one can assume that the sequence of edge updates is picked adversarially before the dynamic algorithm starts

to operate.

104

novelty of our approach is in (1) the algorithm and data structures with which we maintain this

MIS, and (2) the analysis of why polylogarithmic time is sufficient. The high-level intuitions

behind both the algorithm and the analysis are presented in Section 7.1.

7.1 Technical Overview

As pointed out earlier, our main contribution is to show that it is actually possible to maintain

RGMIS at an expected polylogarithmic cost per update. In this section we attempt to explain

some of the barriers and how our work overcomes them.

The first hurdle behind maintaining the greedy MIS is that it may change a lot under

updates. But it is also well-known [64, Theorem 1] that for a random ordering, the expected

alteration to GMIS after the insertion or deletion of a single edge is O(1). This already shows

that maintaining RGMIS is sufficient to get an algorithm with O(1) expected adjustments per

update. However, it is not clear how to detect these changes and maintain RGMIS efficiently:

The natural algorithm to do so would do a breadth-first-search (BFS) from the endpoints of

the edge being updated, but even exploring the neighborhood of a single vertex of degree ∆

might require Ω(∆) time which is prohibitively expensive for general graphs where ∆ can be

as large as Ω(n).3

Our first idea is to maintain not just the RGMIS, but also the “eliminator” of every

vertex v in the graph. Briefly, given a ranking π : V → [0, 1], the eliminator of a vertex v in

a graph G under π is its neighbor in G of the lowest rank that belongs to the RGMIS. (If v is

in the RGMIS, then its eliminator is defined to be itself.) Maintaining the eliminators only

seems to complicate our task further: (1) Even if the MIS changes by a little, it is conceivable

that the eliminators of many more vertices might change. (2) It is still unclear how to find

the set of vertices whose eliminators have changed in o(∆) time.

For problem (1) we extend the classical analysis [64, 154], which showed that the MIS

changes only by a little after each update, to show that the eliminators are also extremely

robust under updates. We stress that this extension is not simple and requires many new

ideas. Overall, we get the following guarantee which may be of independent interest. (It

is crucial for our analysis that we prove this bound on vertex updates—we will discuss this

towards the end of this section.)

Theorem 7.10 (informal—see page 115 for the formal statement). For any arbitrary vertex

3This is precisely the Ω(∆) barrier mentioned in Section 6 of [64].

105

addition or deletion, the expected number of vertices whose eliminator changes is O(log n).

We now turn to problem (2), i.e., the challenge of maintaining information such as

membership in the MIS and eliminators of vertices. Consider an edge update (a, b) with

π(a) < π(b) and suppose that this changes b’s MIS-status. A priori, this seems to require

exploring every neighbor of b (at the very least) and checking to see if their status or eliminator

changes. But a quick examination reveals we only need to explore those neighbors u of b whose

eliminators have rank larger than π(a). (Vertices with rank less than π(a) don’t change their

membership in the MIS, and so vertices with eliminators of rank less than π(a) don’t change

their eliminator.) To help this prune our exploration space, it would make sense to store all

neighbors of b (and of every vertex for that matter) in a search tree indexed by the rank of

their eliminator and indeed this is an idea we pursue. However maintaining every neighbor

of b indexed by its eliminator-rank leads to new maintenance problems: Up to ∆ trees may

need to be updated when b changes its eliminator-rank! We overcome this barrier with the

following solution (which is essentially our final solution): We only maintain the neighbors of

low-rank in a search tree indexed by eliminator-ranks and maintain the neighbors of high-rank

in a more static tree indexed by just their ID (i.e., their name).

Specifically, for each vertex v, we partition its neighborhood (dynamically) in two parts,

N−(v) and N+(v) as described next. The set N−(v) includes neighbors of v whose eliminators

have smaller rank than the eliminator of v. Each vertex u ∈ N−(v) is indexed by the rank

of its (dynamically changing) eliminator. The set N+(v) includes the rest of neighbors of v

and every vertex u ∈ N+(v) is indexed by its (static) ID. Armed with these data structures

it turns out one can implement updates in expected time polylog n per affected vertex, i.e.,

those whose eliminator has changed. (See Lemma 7.4). A key insight behind this analysis

is that vertices whose eliminators have small rank are not likely to change their eliminators

under many updates, allowing us to keep the cost of reindexing N−(v) small. Another insight

is that the maximum degree in the graph induced on vertices whose eliminators have high

ranks is small. Therefore, set N+(v) will be typically small and the fact that it is not indexed

by the rank of its members’ eliminators is not troublesome.

Theorem 7.10 and Lemma 7.4 almost settle our analysis, with the former asserting that

the expected number of affected nodes is small, and the latter asserting that the expected time

to maintain the data structures, per affected node, is small. One final analytic hurdle emerges

at this stage though: These two events are not a priori independent and so the product of the

expectations is not an upper bound on the expected running time of an update! To overcome

106

this, we introduce another twist in our analysis. Recall that Theorem 7.10 holds even if an

entire node is updated (say deleted along with all its edges). When applied to an edge update

(a, b), this gives an upper bound of O(log n) on the expected number of affected vertices even

if we condition on any value of π(a). (See Lemma 7.11.) The reason, roughly speaking, is

that once we condition on π(a), the edge update (a, b) can now be regarded as insertion or

deletion of vertex b.

Overall, we use the randomization in π(a) to bound the expected time per affected

vertex by polylog n and, conditioned on this, still get anO(log n) upper bound on the expected

number of affected vertices due to Lemma 7.11. This allows us to prove an expected polylog n

upper bound on the total running time (see Section 7.5), thus concluding our analysis.

7.2 Some Notation and Basic Tools

We will follow the generic definitions and notation of Chapters 2 and 3. The following is the

additional notation we will use throughout this chapter.

As discussed, our approach is based on maintaining the output of RGMIS. In addition

to the definitions of Chapter 3, for each vertex v, we define the eliminator of v, denoted by

elimG,π(v), as the (unique) vertex in ΓG(v) that belongs to GMIS(G, π) and has the lowest

rank. This is the first vertex in the greedy construction of GMIS(G, π) adding which to the

independent set prevents v from joining it, hence the name eliminator. Note that if v is in

the MIS, we have elimG,π(v) = v; otherwise, elimG,π(v) 6= v and π(elimG,π(v)) < π(v). When

no confusion is possible, we may write elim(v) instead of elimG,π(v) for brevity.

As discussed in Chapter 3, instead of a random permutation we draw random ranks

on the vertices. It is not hard to see that choosing Θ(log n) bit reals is enough to guarantee

no two entries assume the same rank w.h.p. From now on, when we use the term “random

ranking” π, we indeed assume that each entry of π has Θ(log n) bits.

In this chapter, we will use a slightly modified variant of the sparsification property of

RGMIS discussed in Section 3.4 stated below.

Lemma 7.3. Consider a graph G = (V,E), let π : V → [0, 1] be a random ranking, and for

any real p ∈ [0, 1], define Vp as the subset of V including any vertex v with π(elimG,π(v)) >

p. W.h.p., for all O(log n) bit values of p ∈ [0, 1], the maximum degree in graph G[Vp] is

O(p−1 · log n).

Proof sketch. The proof is similar to that of Lemma 3.6 except that we union bound over all

107

poly(n) choices of the ranks.

7.3 Data Structures & The Algorithm

In this section, we present the data structures and the algorithm required for maintaining

RGMIS after each update.

We fix a random ranking π in the pre-processing step and maintain GMIS(G, π) after

each update. Throughout the rest of this section, we focus on the data structures required

for maintaining GMIS(G, π) and the algorithm we use to update them. Fix an arbitrary t

and suppose that we have to address edge update number t. We use “time t” to refer to the

moment after the first t edge updates. Moreover, we use Gt = (V,Et) to denote the resulting

graph at time t. The following definitions are crucial both for the algorithm’s description

and its analysis.

• A := {v | elimGt−1,π(v) 6= elimGt,π(v)}: The set of vertices whose eliminator changes

after the update; we call these the affected vertices.

• F : The set of vertices w that belong to exactly one of GMIS(Gt, π) or GMIS(Gt−1, π).

We call these the flipped vertices. Note that F ⊆ A.

Our main result in this section is the following algorithm.

Lemma 7.4. There is an algorithm to update GMIS(G, π) and the data structures required

for it after insertion or deletion of any edge e = (a, b) in

O

(
|A|min{∆, log n

min{π(a), π(b)}
} log ∆

)
time w.h.p.

Note that the bound on the update-time in the statement above is parametrized by two

random variables |A| and min{π(a), π(b)} of the ranking π. To provide a concrete bound on

the update-time, we need to analyze how these two random variables are related. We prove

the necessary tools for this analysis in Section 7.4 and finally prove that this quantity is in

fact polylog n in Section 7.5.

In the rest of this section, we only focus on proving Lemma 7.4. We describe the data

structures in Section 7.3.1, describe the algorithm in Section 7.3.2, and prove the correctness

and running time of the algorithm in Section 7.3.3.

108

7.3.1 Data Structures

As described before, our algorithm starts with a pre-processing step where we choose a

random ranking π over the n fixed vertices in V , i.e., as discussed, we pick a Θ(log n) bit

real π(v) ∈ [0, 1] for each vertex v. The ranking π will then be used to maintain GMIS(G, π)

after each update to graph G. To update this MIS efficiently, we maintain the following data

structures for each vertex v ∈ V .

• m(v): A binary variable that is 1 if v ∈ GMIS(G, π) and 0 otherwise.

• k(v): The rank of v’s eliminator, i.e., k(v) = π(elimG,π(v)). Note that m(v) = 1 iff

k(v) = π(v).

• N−(v): The set of neighbors u of v where k(u) ≤ k(v). The set N−(v) is stored as a

self-balancing binary search tree (BST) and each vertex u in it is indexed by k(u).

• N+(v): The set of neighbors u of v where k(u) ≥ k(v). The set N+(v) is also stored as

a BST, but unlike N−(v), each member u in N+(v) is indexed by its ID.

It has to be noted that each vertex u ∈ N−(v) is indexed by k(u), a property that

may change after an edge update and thus we may need to re-order the vertices in N−(v).

However, the vertices in N+(v) are simply indexed by their IDs which are static. Also,

observe that:

Observation 7.5. For any two neighbors u and v, u ∈ N+(v) if and only if v ∈ N−(u).

Proof. If u ∈ N+(v), then k(u) ≥ k(v); since N−(u) includes every neighbor w of u with

k(w) ≤ k(u), and k(v) ≤ k(u), we have v ∈ N−(u). Similarly, if v ∈ N−(u), then k(v) ≤ k(u);

since N+(v) includes every neighbor w of v with k(w) ≥ k(v) and k(u) ≥ k(v), we have

u ∈ N+(v).

From now on, we use mt(v), kt(v), N−t (v) and N+
t (v) to respectively refer to data

structures m(v), k(v), N−(v) and N+(v) by time t. Before describing the algorithm, we

describe the pre-processing step in more details.

Pre-processing Step. Apart from choosing random ranking π, we initialize an array Pv ← ∅

for every vertex v in the pre-processing step. This array will later be used in the update

algorithm in Section 7.3.2. Moreover, we construct greedy MIS over the original graph

G0 = (V,E0) via the trivial approach: We iterate over the vertices according to π to construct

109

GMIS(G0, π) and set m(v) for each vertex v. Then for each vertex v, we iterate over all of its

neighbors to fill in k(v), N+(v), and N−(v). We initially spend O(n log n) time for sorting the

vertices, then for each vertex v, we spend O(deg(v)) time to fill in its data structures. This

process, overall, takes O((|V |+ |E0|) log n) time which is clearly optimal (up to a logarithmic

factor) as it is required to read the input.

7.3.2 The Algorithm

We now turn to describe how we maintain the data structures defined in the previous section

after each edge update. Consider update number t, and suppose that an edge e = (a, b) is

either inserted or deleted. Moreover, assume w.l.o.g. that π(a) < π(b). We show how our

data structures can be adjusted accordingly in the time specified by Lemma 7.4.

Since we are maintaining random greedy MIS—and not just any MIS—of a dynamically

changing graph, a single edge update can potentially affect vertices that are multiple-hops

away. To detect these vertices efficiently, we use an iterative approach with which, intuitively,

we do not “look” at too many unaffected vertices. Before formalizing this, we start with an

observation. The proof is a simple consequence of the structure of greedy MIS and thus we

defer it to Section 7.5.2.

Observation 7.6. For any vertex v ∈ A, the following properties hold:

1. kt−1(v) ≥ π(a) and kt(v) ≥ π(a).

2. if v 6= b, then v has a neighbor u such that π(u) < π(v) and u ∈ F .

We start with an intuitive and informal description of the algorithm. The algorithm’s

formal description and the proofs are given afterwards.

Algorithm Outline. Observation 7.6 part 2 implies that if a vertex u is in set A, then there

should be a path from vertex b to u where all the vertices in the path (except u) belong to F

and the ranks in the path are monotonically increasing. This motivates us to use an iterative

approach. We start by a set S which originally only includes vertex b. Then we iteratively

take the minimum rank vertex v from S, detect whether v ∈ F and if so, we add all the

“relevant neighbors” of v that may continue these monotone paths to set S. Clearly, we

cannot add all neighbors of v to S since there could be as many as Ω(∆) such nodes. Rather,

we only consider neighbors u of v where kt−1(u) ≥ π(a). Observation 7.6 part 1 guarantees

that every vertex u ∈ A has kt−1(u) ≥ π(a) and thus this set of relevant neighbors is sufficient

110

to ensure any vertex in A will be added to S at some point. Note that by definition, for any

vertex u ∈ V \ A, both k(u) and m(u) will remain unchanged after the update. Therefore,

once we handle all vertices in set S, for every vertex u in the graph, k(u) and m(u) should

be updated. However, note that the adjacency lists of vertices outside A may require to be

updated if they have a neighbor in A. We do this at the end of the algorithm. Algorithm 11

below formalizes the structure of this algorithm and the subroutines used are formalized

afterwards.

We use kt−1(v) and kt(v) to refer to the value k(v) should hold before and after the

update respectively. In the process of updating k(v) from kt−1(v) to kt(v), whenever we use

k(v) without any subscript in the algorithm, we refer to the value of this data structure at

that specific time. In particular, since we update the vertices iteratively, it could happen

that in a specific time during the algorithm, for some vertex u, k(u) = kt(u) and for another

vertex w, k(w) = kt−1(w). The same notation extends to m(v), N+(v), and N−(v) in the

natural way.

Algorithm 11: Maintaining data structures after insertion/deletion of e = (a, b).

1 S ← {b}
2 For each vertex v, we have an array Pv = ∅. // Initialized in the pre-processing step.

3 while S is not empty do
4 Let v ← arg minu∈S π(u) be the minimum rank vertex in S.
5 if IsAffected(v) then // Checks whether v ∈ A in time O(|Pv|).
6 Hv ← FindRelevantNeighbors(v, π(a))

// Hv includes neighbors u of v with kt−1(u) ≥ π(a) and has size O(logn
π(a)

) w.h.p.

7 UpdateEliminator(v,Hv) // Updates k(v) and m(v) by iterating over Hv.

8 if v ∈ F then
9 for any vertex u ∈ Hv do

10 if π(u) > π(v) then insert u to S and insert v to Pu.

11 Remove v from S and set Pv ← ∅.
12 UpdateAdjacencyLists() // Updates adjacency lists N+ and N− where necessary.

We use iteration to refer to iterations of the while loop in Algorithm 11. The following

invariants hold at the beginning of the algorithm when S = {b} and, as we will show in

Claim 7.27 via an induction, will continue to hold throughout.

Invariant 7.7. Consider the start of any iteration and let v be the lowest-rank vertex in S. It

holds true that k(u) = kt(u) and m(u) = mt(u) for every vertex u with π(u) < π(v), i.e., k(u)

and m(u) already hold the correct values. Moreover, k(u) = kt−1(u) and m(u) = mt−1(u) for

every other vertex u with π(u) ≥ π(v).

111

Invariant 7.8. Consider the start of any iteration and let v be the lowest-rank vertex in S.

The set Pv includes a vertex u iff: (1) π(u) < π(v), and (2) u ∈ F , and (3) u and v are

adjacent.

Invariant 7.9. For any vertex u, before reaching Line 12 of Algorithm 11, adjacency lists

N+(u) and N−(u) respectively hold values N+
t−1(u) and N−t−1(u).

We continue by formalizing all the subroutines used in Algorithm 11.

Subroutine IsAffected(v). This function returns true if v ∈ A and returns false otherwise.

We consider two cases where v = b and v 6= b individually. For the former case, we show that

b ∈ A if and only if m(a) = 1 and k(b) ≥ π(a). For the latter case, we first scan the set Pv

to see if there exists a vertex u ∈ Pv with π(u) = k(v). If such vertex u exists, then v ∈ A.

Otherwise, let u be the lowest-rank vertex in Pv such that m(u) = 1. If π(u) < k(v), then

v ∈ A and otherwise v 6∈ A. This subroutine clearly takes O(|Pv|) time. We also prove its

correctness in Claim 7.21.

Subroutine FindRelevantNeighbors(v, π(a)). The goal in this subroutine is to find

Hv := {u ∈ N(v) | kt−1(u) ≥ π(a)}. (7.1)

By definition of N+(v) and N−(v), each neighbor u ∈ N(v) is at least in one of these two

sets. Therefore, to construct set Hv, we have to find neighbors u of v with kt−1(u) ≥ π(a)

in both N+(v) and N−(v). For the former, we simply iterate over all neighbors u of v in

set N+(v) and if kt−1(u) ≥ π(a), we add u to Hv. For the latter, recall from Invariant 7.9

that N−(v) = N−t−1(v); thus, the vertices u in N−(v) are indexed by kt−1(u). To find only

those in N−(v) with kt−1(u) ≥ π(a), it suffices to search for index π(a) and traverse over all

vertices whose index is at least π(a). The correctness and an analysis of the running time of

this algorithm is provided in Claim 7.22.

Subroutine UpdateEliminator(v,Hv). Given that the minimum-rank vertex v ∈ S is in

set A, this subroutine updates k(v) assuming that the set Hv is already computed and given.

To do this, let u be the lowest-rank vertex in Hv with m(u) = 1. If no such vertex exists, or

if π(u) > π(v), v has to join the MIS and thus we set k(v)← π(v) and m(v)← 1. Otherwise,

u has to be the new eliminator of v and we set k(v)← π(u) and m(v)← 0. This subroutine

clearly takes O(|Hv|) time. We also prove its correctness in Claim 7.23.

112

Subroutine UpdateAdjacencyLists(). If e is deleted, we remove a from N+(b) and

N−(b), and remove b from N+(a) and N−(a) (note that some of these sets may not in-

clude the removing vertex). If e is inserted, we insert a and b into each other’s “appropriate”

adjacency list according to the current values of k(a) and k(b); namely:

• If k(a) < k(b), insert a into N−(b), and insert b into N+(a).

• If k(a) > k(b), insert a into N+(b), and insert b into N−(a).

• If k(a) = k(b), insert a into N−(b) and N+(b), and insert b into N−(a) and N+(a).

We also need to update the adjacency lists of any affected vertex v, since after changing k(v),

some neighbors of v may have to move from N+(v) to N−(v) or vice versa. Moreover, if an

affected vertex v is in N−(u) of some vertex u, we also need to recompute the position of v

in N−(u), since recall that v should be indexed by k(v) in N−(u) which has now changed.

To address the changes above, the crucial property is that for any vertex v ∈ A, any

vertex u that has to move between N+(v) and N−(v) or has v in its set N−(u), has to belong

to Hv (see Claim 7.24 for the proof). Therefore in the algorithm, for any vertex v ∈ A, we

only iterate over the vertices u ∈ Hv and based on k(u) and k(v), which at this point in the

algorithm are correctly updated, determine the membership of vertex v in adjacency lists of

vertex u and vice versa. We then update N−(v), N+(v), N−(u) and N+(u) accordingly.

7.3.3 Overview of Correctness & The (Parametrized) Running Time

The correctness of Algorithm 11 follows mainly from the greedy structure of RGMIS and

does not require a sophisticated analysis. As such, we defer it to Section 7.5.2. Here, we

focus on the main ideas required for bounding the running time of the algorithm stated in

Lemma 7.4. A complete proof of this lemma is also presented in Section 7.5.2.

One particularly important property is that, w.h.p., the size of set Hv for every vertex

v ∈ A is O
(

min{∆, logn
π(a) }

)
. This is formally proved in Claim 7.22 of Section 7.5.2; but the

main intuition is as follows. From definition of Hv, every vertex u ∈ Hv has kt−1(u) ≥ π(a).

Moreover, since v ∈ A, by Observation 7.6 part 1, we also have kt−1(v) ≥ π(a). This means

that if we construct GMIS in graph Gt−1 on the prefix of vertices with rank in [0, π(a)), then

vertex v will survive and will have a remaining degree of at least |Hv|. Since the adversary is

oblivious and the ranking π and graph Gt−1 are independently chosen, we can use Lemma 7.3

to argue that in this remaining graph, maximum degree is, w.h.p., at most O
(

min{∆, logn
π(a) }

)
implying the same upper bound on |Hv|.

113

Observe that in the algorithm, only for vertices v ∈ F we insert (a subset of) their

relevant neighbors Hv to S. Therefore, the total number of vertices inserted to S is at most

O
(
|F|min{∆, logn

π(a) }
)
, w.h.p. However, this is not an upper bound on the algorithm’s running

time since each vertex in S is not simply processed in constant time. We summarize these

procedures below.

Subroutine IsAffected(v). This subroutine is called for every vertex v ∈ S. It is clear

from description that IsAffected(v) takes O(|Pv|) time. Therefore, the aggregated running

time of this function for all vertices in S is
∑

v∈S |Pv|. Observe that each vertex u ∈ Pv

is in F . Furthermore, each vertex u ∈ F belongs to Pv of at most |Hu| vertices due to

Line 10. Therefore, a simple double-counting argument shows that w.h.p.,
∑

v∈S |Pv| ≤

O
(
|F|min{∆, logn

π(a) }
)
.

Subroutine FindRelevantNeighbors(v, π(a)). This is called for every vertex v ∈ A.

Thanks to the fact that N−(v) is indexed by kt−1(.) and that N+(v) has size at most O(|Hv|)

(we show this in the proof of Claim 7.22) this subroutine takes O(|Hv| log ∆) time where the

extra log ∆ factor is for iterating over BST N−(v). Thus, the aggregated running time is

O
(
|A|min{∆, logn

π(a) } log ∆
)
.

Subroutine UpdateEliminator(v,Hv). This subroutine is only called for vertices v ∈ A

and takes O(|Hv|) time. Clearly, the total running time is O
(
|A|min{∆, logn

π(a) }
)
, w.h.p.

Subroutine UpdateAdjacencyLists(). As described in the subroutine, for any vertex

v ∈ A, v has to be re-indexed or moved in adjacency lists of at most |Hv| of its neighbors.

Each such operation requires O(log ∆) time. Therefore, the aggregated running time is w.h.p.

O
(
|A|min{∆, logn

π(a) } log ∆
)
.

The total running time of the algorithm is the sum of the aggregated running time of

each of the procedures above which is O
(
|A|min{∆, logn

π(a) } log ∆
)

as required by Lemma 7.4.

7.4 An Analysis of Affected Vertices: Proof of Theorem 7.10

In this section, we prove Theorem 7.10 which we briefly highlighted in Section 7.1. In this

regard, for any two graphs G = (V,E) and G′ = (V ′, E′) with V ′ ⊆ V and a ranking π

over V , we define Aπ(G,G′) := {v ∈ V | elimG,π(v) 6= elimG′,π(v)} to be the set of vertices

with different eliminators in the two graphs. Note that this is analogous to the definition of

114

“affected vertices” in the previous section and hence the choice of notation. A more formal

statement of Theorem 7.10 reads as follows:

Theorem 7.10. Fix an arbitrary graph G = (V,E) and let G′ = G[V \ {v}] be obtained by

removing an arbitrary vertex v from G. If π is a random ranking over V , Eπ[|Aπ(G,G′)|] =

O(log n).

The fact that Theorem 7.10 bounds the number of affected vertices as a result of a

vertex update can be used to bound the affected vertices by O(log n) as a result of an edge

update e = (a, b), even when we condition on any value for min{π(a), π(b)}.

Lemma 7.11. Fix an arbitrary graph G = (V,E) and let G′ = (V,E′) be the graph obtained

by adding or removing an arbitrary edge e = (a, b) to G. If π is a random ranking over V , then

for any value of λ ∈ [0, 1], it holds that Eπ[|Aπ(G,G′)| | min{π(a), π(b)} = λ] ≤ O(log n).

Lemma 7.11 is crucial for our analysis as it implies that the two random variables

|Aπ(G,G′)| and min{π(a), π(b)}, which recall are used in the statement of Lemma 7.4, can

be regarded as “almost” independent. We elaborate more on this in Section 7.5.

We first prove Lemma 7.11 given the correctness of Theorem 7.10. The bulk of analysis

is then concentrated around proving Theorem 7.10.

Proof of Lemma 7.11. Suppose w.l.o.g. that π(a) < π(b), i.e., π(a) = λ by the conditional

event. Let U be the subset of V containing vertices w with π(w) ≤ π(a). We prove the

lemma even when the set U , and the rank of the vertices in it are chosen adversarially.

We have G′[U] = G[U] since u 6∈ U and the only difference of the two graphs G′ and

G which is in edge (a, b) does not belong to either of the two induced graphs. Therefore, we

have GMIS(G′[U], π) = GMIS(G[U], π); let IU be this MIS. Furthermore, let H ′(V ′H , E
′
H) and

H(VH , EH) be the residual graphs after we remove vertices in IU and their neighbors from

G′ and G respectively. It is not hard to see that either H = H ′ (if a 6∈ IU or if b has another

neighbor w with π(w) < π(a) in IU) or H ′ has exactly one extra vertex than H which has to

be b, i.e., H = H ′[V ′H \ {b}]. In the former case, since the two graphs are equal, no matter

how π is chosen, the eliminators of all vertices will be the same. In the latter case, the two

graphs H and H ′ differ in only one vertex and no information about the relative order of

the vertices in VH or V ′H in π is revealed. Thus, by Theorem 7.10, the expected number of

vertices whose eliminators are different in H and H ′ is O(log n).

We now, turn to prove Theorem 7.10 and start with some notation. Throughout the

115

rest of this section, vertex v should be regarded as fixed. We use I and I ′ to respectively

denote independent sets GMIS(G, π) and GMIS(G′, π). Also, for brevity, we use Aπ instead

of Aπ(G,G′). Furthermore, we define Fπ as the subset of vertices in Aπ whose MIS-status is

flipped, i.e., u ∈ Fπ if and only if u belongs to exactly one of I or I ′.

Instead of rankings, it will be more convenient to consider random permutations instead

of random ranks for the arguments of this section, recalling from Chapter 3 that there is no

difference in the distribution of the two.

The following observation is very similar to Observation 7.6 of the previous section and

will be very useful here too.

Observation 7.12. If Aπ is non-empty, then v ∈ I and v ∈ Fπ. Furthermore, for every

vertex u ∈ Aπ \ {v}, there is another vertex w ∈ Fπ that is adjacent to u and π(w) < π(u).

Proof. We first prove that if Aπ 6= ∅ then v ∈ I. Assume for contradiction that v 6∈ I and

Aπ 6= ∅. Since v does not belong to G′, we also have v 6∈ I ′, i.e., v is in neither of the two

maximal independent sets I and I ′. Now take the minimum rank vertex u in Aπ (which

exists since Aπ 6= ∅). Since u ∈ Aπ, by definition, its eliminators should be different in I and

I ′. Therefore, there should exist a vertex w with π(w) < π(u), that is in exactly one of the

two maximal independent sets. Since v is in neither of I and I ′, w 6= v. However, in this

case, w would also belong to Aπ, contradicting that u is the minimum rank vertex in Aπ,

and completing the proof of this part.

For the second part, fix a vertex u ∈ Aπ and let x and x′ be its eliminators in I and

I ′ respectively. Note that x and x′ cannot be the same vertex or otherwise u 6∈ Aπ. Suppose

that π(x) < π(x′). The fact that x is an eliminator of u in I means that x ∈ I. On the other

hand, the fact that x′, instead of x, is the eliminator of u in I ′ means that x 6∈ I ′. This means

that x has to belong to Fπ. A similar argument holds for the case where π(x′) < π(x).

For a vertex u ∈ Aπ \ {v}, we define the parent of u, denoted by pπ(u), as its

neighbor in Fπ (which exists by observation above) with the lowest rank, i.e., pπ(u) =

arg minw∈N(u)∩Fπ π(w). Furthermore, we define the propagation path Pπ(u) of each vertex

u ∈ Aπ as:

Pπ(u) =

(v) if u = v,

(Pπ(pπ(u)), u) otherwise.

With a slight abuse of notation, Pπ(u) can be denoted by a sequence (w1, . . . , wk) where

w1 = v, wk = u, and for every i ∈ [k − 1], wi = pπ(wi+1). Note that this sequence is a valid

116

path of the graph because by definition each vertex is a neighbor of its parent and π(pπ(u))

is strictly smaller than π(u) by Observation 7.12, thus, no vertex can be visited twice in the

sequence. Furthermore, w1 = v because every vertex w ∈ Aπ has a parent pπ(w) except v.

Claim 7.13. Fix an arbitrary permutation π, an arbitrary vertex u ∈ Aπ, and let Pπ(u) =

(w1, . . . , wk). For odd i ∈ [k−1], wi ∈ GMIS(G, π) and for even i ∈ [k−1], wi 6∈ GMIS(G, π).

Proof. Since u ∈ Aπ and thus Aπ 6= ∅, we already know from Observation 7.12 that vertex

v = w1 has to belong to GMIS(G, π), proving the claim for i = 1. To complete the proof, we

show that for any i ∈ [k − 2], exactly one of wi and wi+1 is in GMIS(G, π).

First, observe that since GMIS(G, π) is an independent set, no two adjacent vertices can

belong to it. Therefore, we only have to show that for any i ∈ [k − 2], it cannot be the case

that neither of wi and wi−1 are in GMIS(G, π). Suppose for contradiction that this holds. By

definition of propagation paths, and since i ∈ [k−2], we get that wi is the parent of wi+1 and

wi+1 is the parent of wi+2. Every vertex that is a parent of another vertex has to be in Fπ by

definition. Therefore, both wi and wi+1 belong to Fπ. Combined with the assumption that

neither of wi and wi+1 are in GMIS(G, π), both have to belong to GMIS(G′, π) (by definition

of Fπ) which cannot be possible since GMIS(G′, π) is also an independent set.

Let Π denote the set of all permutations over V . We say a permutation π ∈ Π is

unlikely, if for some vertex u ∈ V , |Pπ(u)| > β log n where β is a constant that we fix later,

and likely otherwise. Denoting the set of likely and unlikely permutations by ΠL and ΠU

respectively, we have

E
π

[|Aπ|] = Pr[π ∈ ΠL] · E
π∼ΠL

[|Aπ|] + Pr[π ∈ ΠU] · E
π∼ΠU

[|Aπ|]. (7.2)

We prove Eπ[|Aπ|] = O(log n) by bounding the two terms in (7.2) individually.

Lemma 7.14 ([60, 89]). If β is a large enough constant, Pr[π ∈ ΠU] ≤ n−2.

Lemma 7.15 (likely permutations). Eπ∼ΠL [|Aπ|] = O(log n).

Lemma 7.14 almost directly follows from the earlier works of [60, 89] on bounding

parallel round complexity of RGMIS; we provide the details in Section 7.4.3. Lemma 7.15,

which is proven in Section 7.4.1, constitutes the novel part of the proof and is indeed where

bulk of the whole analysis is concentrated on. Below, we first show why Lemmas 7.15 and

7.14 are sufficient to prove Theorem 7.10.

117

Proof of Theorem 7.10. By Lemma 7.15, we have Eπ∼ΠL [|Aπ|] = O(log n). Since Pr[π ∈

ΠL] ≤ 1 for being a probability, we get Pr[π ∈ ΠL] · Eπ∼ΠL [|Aπ|] ≤ O(log n), i.e., the

first term in (7.2) is bounded by O(log n). On the other hand, by Lemma 7.14, we have

Pr[π ∈ ΠU] ≤ n−2. Using this, we can bound the second term in (7.2) to be as small as

n−1 even if Aπ includes all n vertices for any π ∈ ΠU . Therefore overall, we get Eπ[|Aπ|] ≤

O(log n) + n−1 = O(log n), which is the desired bound.

7.4.1 Handling Likely Permutations: Proof of Lemma 7.15

In the rest of this section, we focus on proving Lemma 7.15. The overall plan is as follows.

For each permutation π ∈ ΠL, we blame a set of permutations B(π) ⊆ Π such that:

(P1) |B(π)| ≥ |Aπ|.

(P2) For each permutation π′ ∈ Π, there are at most β log n permutations π ∈ ΠL where

π′ ∈ B(π).

We first prove that having such blaming sets satisfying properties P1 and P2 is sufficient

for proving Lemma 7.15 and then describe how the blaming sets are constructed.

Proof of Lemma 7.15. Defining X as the sum
∑

π∈ΠL
|Aπ|, we have:

E
π∼ΠL

[|Aπ|] =
∑
π∈ΠL

Pr[drawing π | π ∈ ΠL] · |Aπ| =
1

|ΠL|
∑
π∈ΠL

|Aπ| =
X

|ΠL|
. (7.3)

By property P1, |B(π)| ≥ |Aπ| for every π ∈ ΠL. Thus,

Y :=
∑
π∈ΠL

|B(π)| ≥
∑
π∈ΠL

|Aπ| = X.

On the other hand, since by property P2, each permutation π′ ∈ Π belongs to B(π) of at

most β log n other permutations π, a simple double counting argument gives Y ≤ |Π|β log n;

implying also that X ≤ |Π|β log n. Moreover, since ΠL = Π \ ΠU and by Lemma 7.14,
|ΠU |
|Π| < n−2, it holds that |ΠL||Π| > 1−n−2, thus, |Π| = O(|ΠL|). For this, X ≤ |Π|β log n implies

X = O(|ΠL| log n). Plugging this into (7.3) gives Eπ∼ΠL [|Aπ|] = O(|ΠL| logn)
|ΠL| = O(log n).

For every permutation π ∈ ΠL, and each vertex u ∈ Aπ, we construct a permutation

ϕπ,u ∈ Π. The blaming set of π will then be the set B(π) =
⋃
u∈Aπ{ϕπ,u}. For a vertex

u ∈ Aπ, with Pπ(u) = (v = w1, w2, . . . , wk = u), we construct permutation ϕπ,u as follows:

118

• For each vertex w 6∈ Pπ(u), ϕπ,u(w)← π(w).

• ϕπ,u(w1)← π(wk).

• For any 2 ≤ i ≤ k, ϕπ,u(wi)← π(wi−1).

In other words, permutation ϕπ,u on all vertices outside Pπ(u) is exactly the same as

π, however for the vertices in Pπ(u), ϕπ,u is obtained by rotating the π ranks by one index

towards u. An example is shown in the figure below.

2
w1

v u

w2 w3 w4 w5

4 6 8 9 9
w1

v u

w2 w3 w4 w5

2 4 6 8

As captured by the following observation, it is not hard to show that with this con-

struction, property P1 is indeed satisfied:

Observation 7.16. By construction above, property P1 is satisfied.

Proof. The reason is that we indeed construct |Aπ| permutations to include in B(π): ϕπ,u

for each u ∈ Aπ. Note, however, that we still need to argue that for any two vertices u and w

in Aπ, permutations ϕπ,u and ϕπ,w are not the same so that the set containing them has size

|Aπ|. This follows because ϕπ,w(v) = π(w) and ϕπ,u(v) = π(u) but π(u) 6= π(w), implying

that ϕπ,w(v) 6= ϕπ,u(v) and thus the two permutations ϕπ,w and ϕπ,u are not equal.

The harder part is to show that our construction also satisfies property P2:

Claim 7.17. By construction above, property P2 is also satisfied.

Suppose that a permutation ρ is blamed by permutations π and π′, i.e., ρ ∈ B(π) ∩

B(π′). This means that there should exist vertices u ∈ Aπ and u′ ∈ Aπ′ where ϕπ,u =

ϕπ′,u′ = ρ. To prove Claim 7.17, we analyze the circumstances under which this may occur.

Consider the propagation paths Pπ(u) = (w1, w2, . . . , wk) and Pπ′(u
′) = (w′1, w

′
2, . . . , w

′
k′) and

recall that wk = u, w′k′ = u′ and w1 = w′1 = v. Let j be the largest integer where for any

i ∈ {1, . . . , j}, we have wi = w′i. Note that clearly j ≥ 1 since w′1 = w1 = v. We call wj

(or equivalently w′j) the branching vertex and analyze the following scenarios which cover all

possibilities individually (see Figure 7.1):

• Scenario 1: j is odd, wj 6= u, and wj 6= u′.

• Scenario 2: j is even, wj 6= u, and wj 6= u′.

119

• Scenario 3: at least one of u or u′ is the same as wj .

w1'

w4' w5'

v u

u' u'

u'

Scenario 1

v u

Scenario 2

v u

Scenario 3

w1

w2'

w2

w3' w1' w2' w3' w4' w1' w2' w3' w4'

w3 w4 w5 w1 w2 w3 w4 w5 w1 w2 w3 w4 w5

Figure 7.1: The grey vertex in each scenario, denotes the corresponding branching vertex wj .

The claim below unveils several important structural properties of propagation paths

and will be our main tool to prove Claim 7.17. See Figure 7.2 for an illustration of some of

these properties.

Claim 7.18. Consider two different permutations π and π′ in ΠL and two (possibly the same)

vertices u and u′. Let wj be the branching vertex for propagation paths Pπ(u) = (w1, . . . , wk)

and Pπ′(u
′) = (w′1, . . . , w

′
k′). If ϕπ,u = ϕπ′,u′ and π′(wj) ≥ π(wj), then:

1. for every vertex w that does not belong to either of Pπ(u) and Pπ′(u
′), π(w) = π′(w).

2. π(w) = π′(w) for every vertex w with π(w) < π(wj).

3. π(wk) = π′(w′k′).

4. k ≥ j + 1 (i.e., vertex wj+1 should exist) and π′(wj+1) = π(wj).

5. wj+1 ∈ GMIS(G, π′).

wj+1 wk

...

wj+1' wk''

... u'w1'
v
w1

w2'

'

w2

wj'

wj wj+1 wk

w3'

w3

wj−1'

wj−1

... ...

w1'
v
w1

w2'

w2

wj'

wj

w3'

w3

wj−1'

wj−1

...

wk''

...
wj+1'

u'

u

u a vertex not in the MIS

a vertex with unspecif
MIS statuspermutation

a vertex in the MIS

the branching vertex

same rank (see the f
description below)

permutation

ied

igure

Figure 7.2: Illustration of some of the properties obtained from Claims 7.13 and 7.18 for vertices
in Pπ(u) = (w1, . . . , wk) and Pπ′(u′) = (w′

1, . . . , w
′
k′) given that ϕπ,u = ϕπ′,u′ and π′(wj) ≥ π(wj)

where wj is the branching vertex. A dashed line between vertices x on the top and y on the bottom
implies π(x) = π′(y). Note that for the illustration purpose, this figure models only scenarios 1 and
2; however, Claims 7.13 and 7.18 are general and hold for all three scenarios.

120

We first show how these properties suffice to prove Claim 7.17, then prove Claim 7.18.

Proof of Claim 7.17. Suppose that a permutation ρ is blamed by two permutations π and π′,

and let u and u′ be the vertices where ϕπ,u = ϕπ′,u′ (we note that u and u′ may be the same

vertex). We show that if these assumptions hold, then scenarios 1 and 2 defined above would

lead to contradictions, implying that scenario 3 is the only case for which this may occur.

We assume w.l.o.g. that π′(wj) ≥ π(wj) so that all conditions of Claim 7.18 are satisfied.

Scenario 1. Since in this scenario wj 6= u′, we get j < k′; more precisely, j ∈ [k′ − 1].

Furthermore, recall that j is assumed to be odd in scenario 1. Combining the two

conditions, Claim 7.13 implies wj ∈ GMIS(G, π′). On the other hand, by Claim 7.18

part 5, wj+1 ∈ GMIS(G, π′). However, this is a contradiction since by definition of

Pπ(u), wj = pπ(wj+1) and thus wj and wj+1 are neighbors; meaning that they both

cannot belong to independent set GMIS(G, π′).

Scenario 2. The assumption wj 6= u′ implies that there is a vertex w′j+1 and that wj =

pπ′(w
′
j+1); thus by definition of pπ′(w

′
j+1), wj ∈ Fπ′ . It also implies that j ∈ [k′ − 1]

(as argued in scenario 1). But since j is even in this scenario, Claim 7.13 implies

wj 6∈ GMIS(G, π′). Let us use H to denote the graph G[V \ {v}] obtained by removing

vertex v from G. Recall that by definition, wj is in Fπ′ iff its MIS-status is different

in GMIS(G, π′) and GMIS(H,π′). Therefore, since wj 6∈ GMIS(G, π′) we have to have

wj ∈ GMIS(H,π′). This also implies that wj+1 6∈ GMIS(H,π′) since as argued in

scenario 1, wj and wj+1 are neighbors in G and thus H. On the other hand, similar to

scenario 1, we should have wj+1 ∈ GMIS(G, π′) by Claim 7.18 part 5. Therefore, since

wj+1 has a different MIS-status in GMIS(G, π′) and GMIS(H,π′), we have wj+1 ∈ Fπ′ .

By definition, Fπ′ ⊆ Aπ′ thus by Observation 7.12,

there exists a vertex x ∈ NH(wj+1) such that x ∈ Fπ′ and π′(x) < π′(wj+1).

Furthermore, by Claim 7.18 part 4, π′(wj+1) = π(wj); combined with π′(x) < π′(wj+1),

this implies π′(x) < π(wj). Observe that by Claim 7.18 part 2 the two permutations π

and π′ are exactly the same on the set of vertices with rank less than π(wj). Therefore,

x ∈ GMIS(G, π′) iff x ∈ GMIS(G, π), and x ∈ GMIS(H,π′) iff x ∈ GMIS(H,π). As a

result, x ∈ Fπ′ implies that x ∈ Fπ.

Finally, recall that pπ(wj+1) is by definition the lowest-rank neighbor of wj+1 in Fπ.

Therefore, since x ∈ Fπ and π(x) < π(wj), we have pπ(wj+1) 6= wj . This contradicts

the definition of Pπ(u) which guarantees wj = pπ(wj+1).

121

As shown above, the only case for which we might get ϕπ,u = ϕπ′,u′ is scenario 3 as the other

two scenarios lead to contradictions. We now show that because of the very specific structure

of scenario 3, each permutation is blamed by at most β log n permutations.

Fix a permutation ρ and let Cρ be a set that includes every pair (π, u) with π ∈ ΠL and

u ∈ V for which ϕπ,u = ρ. Clearly, |Cρ| is an upper bound on the number of permutations

that blame ρ, thus it suffices to bound |Cρ| by β log n.

First, we show that for any two different pairs (π, u) and (π′, u′) in Cρ, we have

|Pπ(u)| 6= |Pπ′(u′)|. Suppose for the sake of contradiction that |Pπ(u)| = |Pπ′(u′)|. Let

Pπ(u) = (w1, . . . , wk) and Pπ′(u
′) = (w′1, . . . , w

′
k) be the vertices in the two paths and let

wj be the branching vertex. We know that ϕπ,u = ϕπ′,u′ = ρ since the pairs belong to Cρ.

Therefore, scenario 3 has to occur and thus either wj = u′ or wj = u. In either case, we get

j = k since u = wk and u′ = w′k. Furthermore, by definition of the branching vertex we have

wi = w′i for any i ∈ [j]. Moreover, by Claim 7.18 parts 2 and 3, for any i ∈ [j], we have

π(wi) = π′(w′i). Meaning that the set of vertices and their ranks in the two permutations are

exactly the same on the propagation paths. On the other hand, for any vertex x that does

not belong to the propagation paths, we also have π(x) = π′(x) due to Claim 7.18 part 1.

Combining these, we get that π = π′. We also showed that wk = w′k and thus u = u′.

Therefore, the two pairs (π, u) and (π′, u′) are identical, which is in contradiction with our

initial assumption that they are different.

Now we show that |Cρ| ≤ β log n. Suppose for contradiction that there are at least

β log n+1 pairs in Cρ. As shown in the previous paragraph, for each pair (π, u) ∈ Cρ, |Pπ(u)|

is unique. Therefore, if |Cρ| > β log n, there should be at least a pair (π, u) with |Pπ(u)| ≥

β log n+1. However, by definition, the propagation-path of every vertex in every permutation

π ∈ ΠL, has size at most β log n which is a contradiction. Therefore, |Cρ| ≤ β log n for any

permutation ρ, thus every permutation ρ is blamed by at most β log n other permutations.

This means that property P2 is also satisfied by our mapping, as desired.

7.4.2 The Mapping’s Structural Properties: Proof of Claim 7.18

In what follows, we prove the parts of Claim 7.18 one by one. Note that the proof of each

part may depend on the correctness of the previous parts.

Proof of Claim 7.18 part 1. For any vertex w that does not belong to the propagation paths

Pπ(u) and Pπ′(u
′), we have ϕπ,u(w) = π(w) and ϕπ′,u′(w) = π′(w) by construction of permu-

122

tations ϕπ,u and ϕπ′,u′ ; hence, to have ϕπ,u = ϕπ′,u′ it should hold that π(w) = π′(w).

Proof of Claim 7.18 part 2. Consider a vertex w with π(w) < π(wj), we prove π(w) = π′(w).

Case 1: w 6∈ Pπ(u) and w 6∈ Pπ′(u′). In this case, by Claim 7.18 part 1 we have π(w) = π′(w).

Case 2: w ∈ Pπ(u). By definition of propagation-path Pπ(u), we have π(w1) < . . . < π(wk).

Therefore, since w ∈ Pπ(u) and π(w) < π(wj), we should have w = wi for some i < j.

Since wj is the branching vertex, this means wi+1 = w′i+1 and wi = w′i. By construction

of ϕπ,u and ϕπ′,u′ , we have ϕπ,u(wi+1) = π(wi) and ϕπ′,u′(w
′
i+1) = π′(w′i). Combined

with wi+1 = w′i+1, wi = w′i, and ϕπ,u = ϕπ′,u′ , this means π(wi) = π′(wi).

Case 3: w 6∈ Pπ(u) and w ∈ Pπ′(u′). We show that it is essentially impossible to satisfy the

property’s condition π(w) < π(wj) in this case, implying that the property holds au-

tomatically. First, observe that w = w′i should hold for some i > j, or otherwise

w ∈ Pπ(u) by definition of the branching vertex wj . By construction of ϕπ′,u′ , this

implies ϕπ′,u′(w) ≥ π′(w′j) = π′(wj). Combined with assumption π′(wj) ≥ π(wj), we

get ϕπ′,u′(w) ≥ π(wj). Moreover, since w 6∈ Pπ(u), we get ϕπ,u(w) = π(w). Thus,

to have ϕπ,u = ϕπ′,u′ , it should hold that π(w) = ϕπ′,u′(w). Since we just showed

ϕπ′,u′(w) ≥ π(wj), this would imply π(w) ≥ π(wj) which as outlined at the start of this

case, is sufficient for our purpose.

The cases above clearly cover all possibilities; thus the proof is complete.

Proof of Claim 7.18 part 3. Recall that w1 = w′1 = v. We have ϕπ,u(v) = π(wk) and

ϕπ′,u′(v) = π(w′k′) simply by construction of these permutations. Therefore, to have ϕπ,u(v) =

ϕπ′,u′(v), we should have π(wk) = π′(w′k′).

Proof of Claim 7.18 part 4. Suppose for contradiction that k ≤ j, i.e., vertex wj+1 does not

exist. Since wj is the branching vertex, it has to belong to Pπ(u) by definition, thus, k ≥ j.

Combined with k ≤ j, the only possibility would be k = j. By Claim 7.18 part 3, we have

π(wk) = π′(w′k′) and since j = k, we get

π(wj) = π′(w′k′). (7.4)

On the other hand, by definition of Pπ′(u
′), we have

π′(w′k′) > π′(w′k′−1) . . . > π′(w′1). (7.5)

123

Moreover, recall from the claim’s assumption that π′(wj) ≥ π(wj). Combining this with (7.4)

and (7.5), the only option is if j = k′. To see this, observe that j ≤ k′ by definition of the

branching vertex; now, if j < k′, then from (7.5) we obtain π′(w′k′) > π′(wj) which due to

(7.4) would imply π(wj) > π′(wj) contradicting the claim’s assumption that π(wj) ≤ π′(wj);

thus, j = k′. Recall that we also assumed j = k at the beginning of the proof, therefore

j = k = k′. This implies by definition of the branching vertex that wi = w′i for any i ∈ [k]

(or equivalently [k′]), i.e., the two paths Pπ(u) and Pπ′(u
′) are exactly the same. Moreover,

due to j = k = k′ and Claim 7.18 parts 2 and 3, for any vertex wi in the propagation

paths, π(wi) = π′(wi). On the other hand, for any vertex x outside the two paths, we have

π(x) = π′(x) by Claim 7.18 part 1. Therefore, overall, the two permutations π and π′ have

to be exactly the same on all vertices, which is a contradiction with the claim’s assumption

that π and π′ are different. Therefore, our initial assumption that k ≤ j cannot hold and

vertex wj+1 should exist.

Finally, by construction of ϕπ,u, we have ϕπ,u(wj+1) = π(wj). Now, since wj+1 6∈

Pπ′(u
′) (otherwise wj+1 would be be the branching vertex instead of wj), we have ϕπ′,u′(wj+1) =

π′(wj+1). From ϕπ,u = ϕπ′,u′ , we get ϕπ,u(wj+1) = ϕπ′,u′(wj+1). Combining these three

equalities, we get π(wj) = π′(wj+1) as desired.

Proof of Claim 7.18 part 5. Suppose for the sake of contradiction that wi+1 6∈ GMIS(G, π′)

and let x := elimG,π′(wj+1) be the eliminator of wj+1 in GMIS(G, π′). Since wj+1 6∈ GMIS(G, π′),

it holds that π′(x) < π′(wi+1). Moreover, by Claim 7.18 part 4, π′(wj+1) = π(wj); com-

bined with inequality π′(x) < π′(wj+1), this implies that π′(x) < π(wj). Note also that, by

Claim 7.18 part 2, the two permutations π and π′ are exactly the same on the set of vertices

with rank less than π(wj); since x is among such vertices,

π(x) = π′(x) < π(wj). (7.6)

Another implication of the equivalence of the two permutations on vertices with rank less

than π(wj) is that since x ∈ GMIS(G, π′) (which holds since x is the eliminator of wj+1 in

GMIS(G, π′)) we also have x ∈ GMIS(G, π). This in turn, implies that x is the eliminator of

wj+1 in GMIS(G, π) as well. On the other hand, since wj+1 is a vertex in path Pπ(u), by

definition of the propagation-paths, it should hold that wj+1 ∈ Aπ. Moreover, by definition

of Aπ, we have elimG,π(wj+1) 6= elimG′,π(wj+1) where G′ is defined as G[V \ {v}]. Denoting

elimG′,π(wj+1) by y and noting that x = elimG,π(wj+1), we get y 6= x. Therefore, one of the

following cases should occur:

124

Case 1: π(y) < π(x). In this case, the fact that x is the eliminator of wj+1 in GMIS(G, π)

even though π(y) < π(x) means y 6∈ GMIS(G, π). On the other hand, y ∈ GMIS(G′, π)

since y = elimG′,π(wj+1), therefore y ∈ Fπ by definition. However, this contradicts

wj = pπ(wj+1) since by (7.6), π(y) < π(x) < π(wj) , thus, y should be the parent of

wj+1 instead of wj .

Case 2: π(y) > π(x). Similarly, in this case, the fact that x is not the eliminator of wj+1 in

GMIS(G′, π) even though π(x) < π(y) implies that x 6∈ GMIS(G′, π). This means that

x ∈ Fπ and again, since π(x) < π(wj), x has to be the parent of wj+1 instead of wj .

To wrap up, wj+1 6∈ GMIS(G, π′) leads to a contradiction, thus wj+1 ∈ GMIS(G, π′).

7.4.3 Unlikely Permutations: Proof of Lemma 7.14

RGMIS can be parallelized in the following way. In each round, each vertex that holds the

minimum rank among its neighbors joins the MIS and then is removed from the graph along

with its neighbors (note that this, in parallel, happens for several vertices in each round).

Fischer and Noever [89], building on an earlier approach of Blelloch, Fineman, and Shun

[60], showed that if permutation π is chosen randomly, with probability at least 1 − n−2, it

takes O(log n) rounds until the graph becomes empty.4 This result as a black-box does not

prove Lemma 7.14. However, to prove this upper-bound on round-complexity, they indeed

upper bound the maximum size of dependency-paths which are structures that are very close

to propagation-paths:

Definition 7.19 ([89]). A path w1, w2, . . . , wk in the graph is a dependency-path according

to permutation π, if for any odd i ∈ [k], vertex wi is in GMIS(G, π) and for any even i ∈ [k],

wi 6∈ GMIS(G, π) and wi−1 = elimG,π(wi).

Recall that indeed, if u1, . . . , uk is a propagation-path, then for every i ∈ [k − 1],

ui = elimG,π(ui+1) by definition. Moreover, by Claim 7.13, except for the last vertex in the

propagation-path, the odd vertices are in the MIS and the even vertices are not. Therefore:

Observation 7.20. If there exists a propagation-path of size ` in the graph, then its first

`− 1 vertices form a dependency-path.

4We note that the success probability of these works is actually 1 − n−c for any desirable constant c > 1

affecting the hidden constants in the round-complexity. For our purpose, c = 2 is sufficient.

125

Fischer and Noever [89] prove that with probability 1 − n−2, every dependency-path

has size O(log n) if π is chosen at random. Therefore, from Observation 7.20, we get that the

probability of having a propagation-path with size β log n, if β is a large enough constant, is

at most n−2, which completes the proof of Lemma 7.14.

7.5 Fully Dynamic MIS: Putting Everything Together

7.5.1 The (Concrete, Non-Parametrized) Running Time

In this section, we show how combining Lemma 7.4 with Lemma 7.11 proves the main claim

of this chapter that MIS can be maintained in polylogarithmic update-time.

Theorem 7.1 (restated). There is a data structure to maintain an MIS against an oblivious

adversary in a fully-dynamic graph that, per update, takes O(log2 ∆ · log2 n) expected time.

Furthermore, the number of adjustments to the MIS per update is O(1) in expectation.

Proof of Theorem 7.1. Consider insertion or deletion of an edge e = (a, b). As before, we use

λ to denote random variable min{π(a), π(b)} and use A to denote the set of vertices whose

eliminators change as a result of this edge update. By Lemma 7.4, we have

E[update-time for an edge e = (a, b)] = E
[
O
(
|A| · log ∆ ·min

{
λ−1 · log n,∆

})]
= O(log ∆) ·E

[
|A| ·min

{
λ−1 · log n,∆

}]
= O(log ∆ · log n) ·E

[
min

{
λ−1 · log n,∆

}]
. (7.7)

The third equation follows from E[|A| | λ] ≤ O(log n) which was proved in Lemma 7.11,

combined with the fact that if for two possibly dependent random variables y1 and y2,

E[y1|y2] ≤ β, then E[y1 ·y2] ≤ βE[y2]. To bound the random variable inside the expectation,

suppose we partition the [0, 1] interval into ∆ sub-intervals I1, . . . , I∆ where Ii = [i−1
∆ , i∆] for

any i ∈ [∆]. Note that if λ ∈ Ii then at least one of π(a) and π(b) is in Ii. Therefore, a simple

union bound implies that Pr[λ ∈ Ii] ≤ Pr[π(a) ∈ Ii] + Pr[π(b) ∈ Ii] = 2/∆. We, thus, have:

E
[
min

{
λ−1 · log n,∆

}]
=

∆∑
i=1

Pr[λ ∈ Ii] ·E
[
min

{
λ−1 · log n,∆

}
| λ ∈ Ii

]
≤

∆∑
i=1

2

∆

(
min

{ ∆

i− 1
log n,∆

})
= O(log n)

∆∑
i=1

1

i
= O(log ∆ · log n).

Replacing this into (7.7) suffices to bound the expected update-time by O(log2 ∆ · log2 n).

Furthermore, as mentioned before in Section 7.1, we already know from [64, Theorem 1] that

the expected adjustment complexity of RGMIS is O(1), completing the proof.

126

7.5.2 Deferred Proofs

We start by proving Observation 7.6 which is crucial for the algorithm’s correctness.

Observation 7.6 (restated). For any vertex v ∈ A, the following properties hold:

1. kt−1(v) ≥ π(a) and kt(v) ≥ π(a).

2. if v 6= b, then v has a neighbor u such that π(u) < π(v) and u ∈ F .

Proof of Observation 7.6 part 1. Let U denote the set of vertices v in V with π(v) < π(a).

Observe that the two induced subgraphs Gt[U] and Gt−1[U] are identical since the only

difference between Gt and Gt−1 is insertion/deletion of edge e = (a, b) whose endpoints both

have rank at least π(a) (recall that π(a) < π(b)) and thus neither belongs to U . Since the

MIS is constructed greedily on lower rank vertices first, the set of MIS vertices in Gt[U] and

Gt−1[U] according to π are exactly the same. Let IU denote these MIS nodes. Note that

any vertex v with kt−1(v) < π(a) should have a neighbor in IU . Since both end-points of

edge e are in V \U , the set of neighbors of IU in both graphs Gt and Gt−1 are also identical.

Therefore for each vertex v with kt−1(v) < π(a), we have kt(v) = kt−1(v) and thus v cannot

be in A by definition. By a similar argument, for any vertex v with kt(v) < π(a) we also

have kt−1(v) = kt(v) and thus v 6∈ A.

Proof of Observation 7.6 part 2. The assumption v ∈ A implies that the eliminator of v has

changed after the update. Let w be the eliminator of v before the update. If the MIS-status

of no neighbor u of v with π(u) ≤ π(w) changes, since v 6= b and the set of neighbors of v are

the same before and after the update, then w remains to be the eliminator of v. Therefore,

to have v ∈ A, the MIS-status of at least one of v’s neighbors changes and this vertex is in

F by definition.

We first prove the correctness of each of the subroutines and then that of the overall

algorithm. These subroutines are proven to be correct by the end of any iteration i condi-

tioned on the assumption that Invariants 7.7-7.9 (or a subset of them) hold at the start of

iteration i. We later inductively prove that these invariants hold and that indeed the whole

algorithm is correct.

Claim 7.21. By the end of any iteration i, subroutine IsAffected(v) correctly decides

whether the lowest-rank vertex v ∈ S is in set A in time O(|Pv|) given that Invariants 7.7-7.9

hold by the start of iteration i.

127

Proof. The algorithm clearly takes O(|Pv|) time since it only iterates over the vertices in Pv

to decide on the output. In what follows, we prove its correctness. As in the algorithm’s

description, we consider two cases where v = b and v 6= b individually.

Case 1 v = b. In this case, the algorithm decides b ∈ A if and only if m(a) = 1 and

k(b) ≥ π(a). We show that this is indeed correct.

The if part. We show that if m(a) = 1 and k(b) ≥ π(a), then b ∈ A. Observe from

Invariant 7.7 that at this point in the algorithm, we have k(b) = kt−1(b). Therefore, the

k(b) ≥ π(a) assumption implies kt−1(b) ≥ π(a). Moreover, the MIS-status of vertex a cannot

change as it is the lower-rank vertex of the updated edge, thus, it holds that mt(a) = mt−1(a)

and consequently m(a) = 1 implies a ∈ GMIS(Gt−1, π). Combining these, the eliminator of b

has to be a iff there is an edge between a and b. Therefore, updating edge e = (a, b) definitely

changes b’s eliminator and thus b ∈ A.

The only if part. Suppose that one of the conditions do not hold, we show b 6∈ A. First,

if k < π(a), then by Observation 7.6 part 1, b 6∈ A as desired. Moreover, if m(a) = 0, as

before, we should have mt−1(a) = mt(a) = 0 since a is the lower-rank vertex of the update.

As a result, insertion or deletion of e cannot have an effect on the eliminator of b and thus

b 6∈ A.

Case 2 v 6= b. In this case, the eliminator of v changes if and only if at least one of the

following conditions hold: (1) the eliminator of v in time t− 1 leaves the MIS, (2) at least a

vertex u adjacent to v with π(u) < k(v) joins the MIS. If none of these conditions hold, then

elimGt−1,π(v) remains to be the smallest-rank vertex in {b} ∪ N(b) that is in the MIS after

the update; therefore by definition of eliminator, kt−1(v) = kt(v) and thus v 6∈ A.

Our algorithm precisely checks these conditions. For condition (1), if the eliminator

u := elimGt−1,π(v) leaves the MIS after the update, it should by definition belong to F . Note

that by invariant 7.8, Pv exactly contains the neighbors w of v with w ∈ F and π(w) < π(v).

Therefore if u ∈ Pv, then condition (1) holds and v ∈ A. Our algorithm also checks condition

(2) by finding the lowest-rank vertex w in Pv with m(w) = 1 and then comparing its rank

with kt−1(v).

Claim 7.22. At any iteration i, with probability at least 1−n−(c+1), Hv has size O(min{∆, logn
π(a) }).

Furthermore, subroutine FindRelevantNeighbors(v, π(a)) correctly finds the set Hv in

time O(|Hv| · log ∆), given that Invariant 7.9 holds by the start of iteration i.

128

Proof. Size of Hv: Observe that if Hv is defined, then as assured by the condition in Line 5

of Algorithm 11, v ∈ A thus by Observation 7.6, kt−1(v) ≥ π(a). Furthermore, by definition,

every vertex u ∈ Hv has kt−1(u) ≥ π(a). This means that if we take GMIS of Gt−1 induced on

vertices with rank in [0, π(a)) and remove them and their neighbors from the graph, v and all

of its neighbors in Hv will survive. Recall that the adversary is oblivious and the graph Gt−1

and random permutation π are chosen independently. Therefore, applying Lemma 7.3 on

graph Gt−1 with p = π(a) bounds |Hv| by O(π(a)−1 log n) w.h.p. Moreover, clearly |Hv| ≤ ∆

since they are neighbors of v, concluding the bound on the size of Hv.

Correctness: The assumption that Invariant 7.9 holds implies that N−(v) = N−t−1(v) and

N+(v) = N+
t−1(v). Therefore, FindRelevantNeighbors(v, π(a)) correctly finds Hv.

Running time: Since the vertices u ∈ N−(v) are indexed by kt−1(u) and the algorithm

iterates only over the neighbors u of v in this set with kt−1(u) ≥ π(a), the running time of

this part is O(|Hv| log ∆) where the log ∆ factor comes from searching in this BST which

has size ∆ at most. However, note that the algorithm iterates over all vertices in N+(v)

since it is not indexed by kt−1(.). Therefore, we have to prove |N+(v)| cannot be larger than

|Hv|. We know from Invariant 7.9 that for any vertex u ∈ N+(v), we have kt−1(u) ≥ kt−1(v).

Moreover, since v ∈ A, by Observation 7.6, kt−1(v) ≥ π(a). Combining the two, we get that

kt−1(u) ≥ π(a). This means that every vertex u ∈ N+(v) that is still a neighbor of v after

the update, should be in set |Hv|. Since at most one edge is removed from the graph at time

t, we have |N+(v)| ≤ |Hv|+ 1, completing the proof.

Claim 7.23. Let v be the lowest-rank vertex at the start of an arbitrary iteration. Subroutine

UpdateEliminator(v,Hv) correctly updates k(v) and m(v) of vertex v in time O(|Hv|)

assuming that Invariant 7.7 holds by this iteration.

Proof. It is clear that the algorithm takes O(|Hv|) time, here we prove its correctness. Note

that at the time of using subroutine UpdateEliminator(v,Hv), we know v ∈ A. Therefore,

from Observation 7.6 part 1, we know kt(v) ≥ π(a) and kt−1(v) ≥ π(a). We consider the two

cases where mt(v) = 1 and mt(v) = 0 differently.

Suppose that mt(v) = 0 and let w be the eliminator of v after the update, i.e., π(w) =

kt(v) (note that since mt(v) = 0, w 6= v). We first show w ∈ Hv by proving that kt−1(w) ≥

π(a). Suppose for contradiction that kt−1(w) < π(a). Then by Observation 7.6 part 1, w 6∈ A

and consequently w 6∈ F since F ⊆ A. Since w is the eliminator of v inGt, we havemt(w) = 1.

Moreover, for w 6∈ F , we also get mt−1(w) = 1 which, by definition, means w has to be its

129

own eliminator in Gt−1 and thus kt−1(w) = π(w). Combined with kt−1(w) < π(a), this would

mean π(w) < π(a). This, however, contradicts kt−1(v) ≥ π(a) since v has a neighbor w in

MIS of Gt−1 with rank smaller than π(a) and thus it should hold that kt−1(v) < π(a). This

contradiction implies that indeed kt−1(w) ≥ π(a) and thus w ∈ Hv. Furthermore, in this

case, since π(w) < π(v), by Invariant 7.7, m(w) = mt(w) = 1 and indeed the lowest-rank

vertex u in Hv with m(u) = 1 should be vertex w and the algorithm is correct.

On the other hand, if mt(v) = 1, then no lower-rank neighbor of v should be in the

MIS. In this case, once we scan the set Hv, we will not find any vertex u with a lower-rank

than π(v) and m(u) = 1, thus we correctly decide that v is in the MIS and update m(v) and

k(v) correctly.

Claim 7.24. Subroutine UpdateAdjacencyLists() correctly updates the adjacency lists

and with probability at least 1 − n−c, takes O(|A| ·min{∆, logn
π(a) } · log ∆) time given that for

any vertex v, k(v) = kt(v).

Proof. The only edge update is between vertices a and b and the algorithm first accordingly

addresses this change by updating N+(a), N−(a), N+(b), and N−(b). For the rest of the

vertices, we do not have an edge update but the changes to the adjacency lists are resulted

by the changes to the eliminators. For a vertex v, these changes are limited to moving its

neighbors between N+(v) and N−(v) or possibly re-indexing its neighbors in N−(v) whose

eliminator has changed.

We say an edge (v, u) causes an update iff position of u and v or their indexing in each

others’ adjacency lists (N+ or N−) needs to be updated. Let T denote the set of these edges.

Note that by definition of N+ and N−, if u /∈ A and v /∈ A, then (v, u) /∈ T . This means

that at least one end-point of any edge in T is in A.

Āssume w.l.o.g. that for edge (v, u) ∈ T , we have v ∈ A. We claim that u ∈ Hv should

hold. To show this, we assume that u /∈ Hv and obtain a contradiction. Recall that we have

u /∈ Hv iff k(u) < π(a). By Observation 7.6 part 1, this would imply kt−1(u) < kt−1(v),

kt(u) < kt(v), and u /∈ A. Because of kt−1(u) < kt−1(v) and kt(u) < kt(v), the position

of vertices u and v in each others adjacency lists remains unchanged. That is, we have

v ∈ N+(u), v /∈ N−(u), u ∈ N−(v), and u /∈ N−(v) at both times t and t − 1. Moreover,

since u 6∈ A, we have kt−1(u) = kt(u) and thus u is already correctly indexed in N−(v).

This is, however, a contradiction since position of u and v and their indexing in each others’

adjacency lists is already updated and as a result (v, u) /∈ T . Therefore, it should indeed hold

that u ∈ Hv.

130

In subroutine UpdateAdjacencyLists(), for any vertex v ∈ A we go over its neigh-

bors u ∈ Hv and determine the membership of vertex v in adjacency lists of vertex u and vice

versa. To do so, by definition of N+ and N− we only need values of kt(v) and kt(u) which

are assumed to be updated (in the statement of the claim). We then update N−(v), N+(v),

N−(u) and N+(u) accordingly; thus the algorithm correctly updates the adjacency lists.

To analyze the running time, using Claim 7.22, we know that for any vertex v ∈ A,

set Hv has size O(min{∆, logn
π(a) }) with probability at least 1 − n−(c+1). Also, each update

takes O(log ∆) time since it consists of at most four insertions and deletions in adjacency

lists which are stored as BSTs. Overall, this means that the running time can be bounded

by O(|A| ·min{∆, logn
π(a) } · log ∆) with probability at least 1− n−c.

Claim 7.25. If Invariant 7.7 holds by some iteration i, then Invariant 7.8 also holds by

iteration i.

Proof. Let u be any vertex adjacent to v with π(u) < π(v) and u ∈ F . In other words, any

vertex that should be in set Pv for the Invariant 7.8 to hold. Assuming that Invariant 7.7

holds, we know that m(u) = mt(u) and m(u) 6= mt−1(u). Observe that in the algorithm,

updating m(u) only happens in subroutine UpdateEliminator(v,Hv) which is followed by

adding u to set P. of any vertex in set Hu if u is flipped. Set Hu by definition includes vertex

v since k(v) ≥ π(a) and π(v) > π(u). This proves that set Pv satisfies Invariant 7.8.

Claim 7.26. Let v be the lowest-rank vertex in S in an arbitrary iteration i of the algorithm.

Assuming that Invariant 7.7 holds at the start of iteration i we have:

1. If S = ∅ at the end of iteration i, for any vertex u ∈ V , m(u) = mt(u) and k(u) = kt(u).

2. If S 6= ∅ at the end of iteration i, then Invariant 7.7 holds at the start of iteration i+ 1

as well.

Proof. Let S ′ denote set S at the end of iteration i and let v′ be the lowest-rank vertex in

that. Throughout the proof, by S we mean set S at the start of iteration i and we use v

to refer to its lowest-rank vertex. Let us first review Invariant 7.7. It states that for any

vertex u, if π(u) < π(v) then k(u) = kt−1(u), and m(u) = mt−1(u) hold and otherwise we

have k(u) = kt−1(u), and m(u) = mt−1(u). We first show that k(v) and m(v) are updated

at the end of iteration i. By Claim 7.25, we know that Invariant 7.8 holds at the start of

iteration i and by Claim 7.21, we know that holding Invariant 7.8 means that subroutine

IsAffected(v) correctly detects if v ∈ A or not. Moreover, by Claim 7.23 if v ∈ A, in the

131

next step, algorithm correctly updates k(v) and m(v). At this point of the algorithm, we

know that for any vertex u with π(u) ≤ π(v), we have k(u) = kt(u) and m(u) = mt(u).

Now, let u be the vertex with the lowest-rank among the vertices in A whose rank is

greater than π(v). To complete the proof it suffices if we show that if such a vertex exists,

then u ∈ S ′. This means that if S′ = ∅, then for any vertex u ∈ V , we have m(u) = mt(u)

and k(u) = kt(u). Moreover, for the case of S′ 6= ∅, it results that for any vertex u, with

π(u) < π(v′) we have m(u) = mt(u) and k(u) = kt(u) or in the other words that Invariant 7.7

holds at the start of iteration i + 1. We use proof by contradiction by assuming that there

exists a vertex u in set A but not in S′ such that for any vertex u′ with π(u′) < π(u) we have

m(u′) = mt(v
′), and k(u′) = kt(u

′). By Observation 7.12, any vertex in A has a neighbor in

F with a lower rank. Let u′ be such a neighbor of u. By the assumption that all neighbors

of u with a lower rank has updated m(.), we have m(u′) 6= mt−1(u′). Observe that in the

algorithm, updating m(u′) only happens in subroutine UpdateEliminator(v,Hu′) which

is followed by adding vertices in Hu to S. Set Hu, by definition, includes vertex u since

k(u) ≥ π(a) (otherwise by Observation 7.6, u /∈ A) and π(u) > π(u′). Thus, we obtain a

contradiction and the proof is completed.

Claim 7.27. Invariants 7.7, 7.8, and 7.9 hold throughout the algorithm with probability 1.

Proof. First, observe that Invariant 7.9 holds since Line 12 is the only part of the algorithm

that we modify the adjacency lists. Moreover, by Claim 7.25, the correctness of Invariant 7.8

results from Invariant 7.8. Thus, we only need to show that Invariants 7.7 holds throughout

the algorithm. We do so using induction. As the base case, in the first iteration of the

algorithm we have S = {b} (or S = ∅ which does not need a proof). We need to show

that for any vertex u if π(u) < π(b) we have k(u) = kt(u), and m(u) = mt(u) and if

π(u) > π(b) we have k(u) = kt−1(u), and m(u) = mt−1(u). Before the start of this iteration

we have not changed k(u) and m(u) of any vertex u thus for all of them k(u) = kt−1(u) and

m(u) = mt−1(u). Moreover, by Observation 7.12, updating edge e does not affect a vertex u

with π(u) < π(b) which means that for any such vertex we have kt(u) = kt−1(u). Therefore,

we conclude that Invariants 7.7 holds for the base case. This completes the proof since the

induction step is a direct result of Claim 7.26.

We continue with a simple observation and then turn to formally prove the runtime.

Observation 7.28. Let vi and vj respectively denote the lowest-rank vertices of S in two

arbitrary iterations i and j of Algorithm 11. If i < j then π(vi) < π(vj).

132

Proof. We show that this claim holds for j = i+1 which can be inductively used to generalize

it to any arbitrary i and j. Let Si and Si+1 respectively denote set S at the beginning of

iteration i and set S at the beginning of iteration i+ 1. We know that vi+1 is either inserted

to S in iteration i or that it is in set Si. Observe that any vertex added to S in the i-th

iteration has rank lower than π(vi) and that vi is the lowest-rank vertex in Si. As a result

π(vi) < π(vi+1).

Claim 7.29. With probability at least 1− n−c, the total running time of the algorithm until

the set S becomes empty is at most O(|A| · log ∆ ·min{ logn
π(a) ,∆}).

Proof. To prove this claim, we first show that |S| and
∑

v∈S |Pv| are both O(|A| · log ∆ ·

min{ logn
π(a) ,∆}) with probability at least 1− n−c. Observe that in the algorithm, we only add

vertices to these sets in Line 10. Moreover, by Observation 7.28, each vertex is removed from

S at most once. Thus, the algorithm runs this line for any vertex v ∈ A and any vertex u

in its Hv only once. Therefore, by Claim 7.22, the number of times the algorithm adds a

vertex to these sets adds up to O(|A| · log ∆ ·min{ logn
π(a) ,∆}) with probability at least 1−n−c.

Note that |S| is equal to the number of iterations in the algorithm and
∑

v∈S |Pv| is the

overall time that the subroutine IsAffected(v) takes over all iterations. Moreover, for any

vertex v ∈ A we run Lines 5-10 of the algorithm which by Claim 7.23 and Claim 7.22 take

O(log ∆ ·min{ logn
π(a) ,∆}) time. To sum up, the total running time of the algorithm until the

set S becomes empty is O(|A| · log ∆ ·min{ logn
π(a) ,∆}) with probability at least 1− n−c.

We are now ready to prove Lemma 7.4.

Lemma 7.4 (restated). There is an algorithm to update GMIS(G, π) and the data structures

required for it after insertion or deletion of any edge e = (a, b) in

O

(
|A|min{∆, log n

min{π(a), π(b)}
} log ∆

)
time w.h.p.

Proof. By Claim 7.29, with probability at least 1− n−c it takes O(|A| · log ∆ ·min{ logn
π(a) ,∆})

time until set S becomes empty. We further show that when this happens we have m(v) =

mt(v) and k(v) = kt(v). This is a direct result of Claim 7.27 and Claim 7.26. The former

stated that Invariant 7.7 holds throughout the algorithm and the latter states that if Invari-

ant 7.7 holds in the last iteration of the algorithm, then for any vertex u we have m(v) = mt(v)

and k(v) = kt(v). Moreover, using Claim 7.24 we know that subroutine UpdateAdjacen-

cyLists() correctly updates the adjacency lists and with probability at least 1 − n−c, it

133

takes O(|A| · log ∆ · min{∆, logn
π(a) }) time given that for any vertex v we have k(v) = kt(v).

This completes the proof and we obtain that with probability at least 1− n−c, Algorithm 11

correctly updates all the data structures in O(|A| · log ∆ ·min{ logn
π(a) ,∆}) time.

134

Chapter 8

Fully Dynamic Maximal Matching

In this chapter, we show that a variant of our MIS algorithm of Chapter 7 can also main-

tain a random greedy maximal matching (RGMM) over a random order on the edges, with

essentially the same update-time. The end-result is the following:

Theorem 8.1. There is a data structure to maintain a random greedy maximal matching

against an oblivious adversary in a fully-dynamic graph that per update, takes O(log2 ∆·log2 n)

expected time. Furthermore, per update, O(1) in expected edges leave or are added to the

matching.

This also leads to the following worst-case guarantee when used as a black-box [53,

Theorem 1.1].

Corollary 8.2. There is a data structure to maintain a maximal matching against an obliv-

ious adversary in a fully-dynamic graph that w.h.p. has O(log2 ∆ · log4 n) worst-case update-

time.

We note that there has been a huge body of work on the matching problem in dynamic

graphs, see e.g. [135, 22, 132, 102, 58, 55, 147, 57, 56, 100, 65, 10, 53] and the references

therein. If one allows amortization, then one can get much more efficient algorithms for MM

due to the seminal works of Baswana, Gupta, and Sen [22] and Solomon [147]. However,

our approach of maintaining RGMM significantly deviates from the prior works on MM in

dynamic graphs. We believe this is an important feature on its own and may find further

applications.

Comparison to the Dynamic MIS Algorithm of Chapter 7

It is well-known that a MM of a graph can be found by first taking its line-graph and then

constructing an MIS on it. Doing so, the edges in the original graph that correspond to the

135

MIS nodes in the line-graph will form an MM. However, the line-graph may be much larger

than the original graph and thus expensive to construct and maintain. Nonetheless, because

of the very specific structure of line-graphs, we can indeed implement (a simpler variant of)

the same algorithm for MM without going through an explicit construction of the line-graph.

In what follows, we highlight the main differences between our MIS algorithm and its MM

implementation.

The first difference is that for RGMM, the random ranking π has to be drawn on the

edges instead of the vertices and thus we cannot fix π in the pre-processing step. However,

this is easy to handle: We draw the rank π(e) ∈ [0, 1] of any edge e randomly upon its arrival.

The second difference is where the specific structure of line-graphs helps significantly.

The set of edges whose MM-statuses change as a result of an edge update form a single path

or a single cycle. In fact, this holds true for any arbitrary ranking π over the edges. This is

in sharp contrast with MIS, where the propagations may branch (consider a star and assume

that the center leaves the MIS). This branching is precisely what complicates the proof of

Theorem 7.10 for MIS. Since we do not have this problem for MM, we can directly bound

the set of edges with different MM-statuses by O(log n), w.h.p., using a reduction to the

parallel round complexity of RGMM [60, 89]. Therefore, the analog of Theorem 7.10 for MM

is significantly easier to prove. It also simplifies the algorithm we use to detect the changes

to MM (compared to MIS).

The third difference is simple, but plays a crucial role in both adapting the MIS al-

gorithm to MM and also simplifying it. Instead of storing the adjacency lists on the edges,

which is the natural idea if one constructs the line-graph explicitly, we can simply store them

on the vertices. In fact, because of this difference, it also turns out that for MM, we do

not need to partition the adjacency lists into N+ and N−. That is, we can afford to keep

an adjacency list N(v) on each vertex v including all incident edges to v, where each edge

e ∈ N(v) is indexed by its eliminator’s rank. The main reason that this is feasible, here, is

that if the eliminator of an edge e = (u, v) changes, we only need to re-index e in N(u) and

N(v). However, for MIS, if the eliminator of a vertex u changes, we may have to re-index u

in the adjacency lists of all of its neighbors.

Algorithm Setup. Suppose that we have fixed the ranking π on the edges. As described

above, we can draw π(e) ∈ [0, 1] for any edge e in the graph at the time of its arrival. In

what follows, considering update number t, which can be an edge insertion or deletion, we

describe how to address it and update GMM(Gt−1, π) to GMM(Gt, π) in polylog n time.

136

Analogous to the MIS algorithm, we define A := {w | elimGt,π(w) 6= elimGt−1,π(w)}

to be the set of edges whose eliminator changes after the update and call these the affected

edges. Moreover, we define F to be the set of edges whose MM-status changes after the

update; we call these the flipped edges. Note that F ⊆ A. We first provide the following

algorithm.

Lemma 8.3. There is an algorithm to update GMM(G, π) and the data structures needed for

insertion/deletion of any edge f = (a, b) in O
(
|F|min{∆, logn

π(f)} log ∆
)

time, w.h.p.

Note a subtle difference between Lemma 8.3 and the similar Lemma 7.4 we had for

MIS: Here, the running time is parametrized by |F| whereas in Lemma 7.4 it is by |A|.

We will later prove in Section 8.2.4 that the running time in Lemma 8.3 is actually

bounded by O(log2 ∆ log2 n) in expectation, thus, proving Theorem 8.1.

8.1 Some Notation and Basic Tools

We will follow the generic definitions and notation of Chapters 2 and 3. The following is the

additional notation we will use throughout this chapter.

Similar to Chapter 7, we define eliminators for RGMM. For each edge e, we define

the eliminator of e, denoted by elimG,π(e), as the (unique) edge incident to e that belongs

to GMM(G, π) and has the lowest rank. If e is in the MM itself, we have elimG,π(e) = e;

otherwise, elimG,π(e) 6= e and π(elimG,π(e)) < π(e). When no confusion is possible, we may

write elim(e) instead of elimG,π(e) for brevity.

Also similar to Chapter 7, instead of a random permutation we draw Θ(log n) bit

random ranks and use the following sparsification property.

Lemma 8.4. Consider a graph G = (V,E), let π : E → [0, 1] be a random ranking, and for

any real p ∈ [0, 1], define Ep to be the subset of E including any edge e with π(elimG,π(e)) > p.

W.h.p., for all O(log n) bit values of p ∈ [0, 1], every vertex has O(p−1 · log n) incident edges

in Ep.

Proof sketch. The proof is similar to that of Lemma 3.7 except that we also union bound

over all poly(n) choices of p.

137

8.2 The Formal Algorithm and its Analysis

8.2.1 Data Structures

We maintain the following data structures on each edge e in graph G.

• m(e): A binary variable that is 1 if edge e ∈ GMM(G, π) and 0 otherwise.

• k(e): The rank of e’s eliminator, i.e., k(e) = π(elimG,π(e)). Note that m(e) = 1 iff

k(e) = π(e).

Furthermore, for any vertex v, we maintain the following data structures.

• k(v): If an edge e ∈ GMM(G, π) is connected to v, then k(v) = π(e); otherwise, k(v) =

∞.

• N(v): The set of edges connected to vertex v. The set N(v) is stored as a self-balancing

binary search tree and each edge e in it is indexed by k(e).

Similar to MIS, in the pre-processing step, we can simply construct the RGMM of the

original graph G0 = (V,E0) and fill in the data structures above in O((|V |+ |E0|) log n) time.

8.2.2 The Algorithm

The following observation is analogous to Observation 7.6 for MIS and motivates the same

iterative approach in determining the changes in MM.

Observation 8.5. For any edge e ∈ A, the following properties hold:

1. kt−1(e) ≥ π(f) and kt(e) ≥ π(f).

2. if e 6= f , then e has a neighbor e′ such that π(e′) < π(e) and e′ ∈ F .

Algorithm 12 formalizes how our data structures can be updated after each edge in-

sertion/deletion. The subroutines not formalized in the algorithm will be formalized subse-

quently.

We use iteration to refer to iterations of the while loop in Algorithm 12. The following

invariants will hold throughout the algorithm.

Invariant 8.6. Consider the start of any iteration and let e be the lowest-rank vertex in S. It

holds true that k(e′) = kt(e
′) and m(e′) = mt(e

′) for any edge e′ with π(e′) < π(e), i.e., k(e′)

138

Algorithm 12: Maintaining the data structures after insertion or deletion of f = (a, b).

1 S ← {f}
2 while S is not empty do
3 Let e = (u, v)← arg mine′∈S π(e′) be the minimum rank edge in S.
4 UpdateDataStructures(e) // Updates k(e), m(e), k(v), k(u), A, and F .

5 if e ∈ F then
6 He ← {e′ ∈ N(v) ∪N(u) | kt−1(e′) ≥ π(f)}

// It can be found in time O(log ∆ · |He|) since N(v), and N(u) are indexed by k(.).

7 for any edge e′ ∈ He with π(e′) > π(e) do
8 insert e′ to S.

9 Remove e from S.

10 UpdateAdjacencyLists() // Updates adjacency lists where necessary.

and m(e′) already hold the correct values. Moreover, k(e′) = kt−1(e′) and m(e′) = mt−1(e′)

for every other edge e′ with π(e′) ≥ π(e).

Invariant 8.7. Consider any vertex v in an arbitrary iteration of the algorithm, and let

Mv = {e ∈ E | m(e) = 1}. Throughout the algorithm, it holds that if Mv 6= ∅, then

k(v) = mine∈Mv π(e), and otherwise k(v) =∞.

We continue by formalizing all subroutines used in Algorithm 12.

Subroutine UpdateDataStructures(e). Let u and v denote the two end-points of edge

e. This function updates k(e), m(e), k(v), and k(u) which also determines the membership of

e to sets A and F . Let x = min(k(v), k(u)). We show that e joins the matching iff x ≥ π(e)

which results in m(e)← 1, k(e)← π(e), k(v)← π(e), and k(u)← π(e). Otherwise, we have

m(e) ← 0 and k(e) ← x. Note that if e was previously in the matching and is flipped now,

we need to update k(v) and k(u) if they are equal to π(e). We show that if e is removed from

the matching and k(v) = π(e) then we should set k(v)←∞ and the same for vertex u.

Subroutine UpdateAdjacencyLists(). We first update N(a) and N(b). We remove f

from both these sets if f is deleted and add it otherwise. Also, for any affected edge e = (u, v)

we need to update its index in sets N(v) and N(u). We do so by a single iteration over set A.

Due to the fact that adjacency lists are BSTs with size O(∆), this takes O(|A| log ∆) time.

8.2.3 Correctness & (Parametrized) Running Time

The correctness of Algorithm 12 follows from basic arguments and the greedy structure of

RGMM and hence we defer it to Section 8.2.5. Here, we discuss why the running time of

139

the algorithm is O
(
|F|min{∆, logn

π(f)} log ∆
)

as claimed in Lemma 8.3. The complete proof of

both the correctness and running time of the algorithm is presented in Section 8.2.5.

Using a similar argument used for MIS, we can use Lemma 8.4 to prove (see Sec-

tion 8.2.5):

Claim 8.8. At any iteration i, with probability 1−n−(c+1), set He has size O(min{∆, logn
π(f)})

and can be constructed in time O(|He| log ∆).

Let us first analyze the running time before the last line where we update adjacency

lists. Observe that any edge e′ that is added to set S belongs to He of an edge e ∈ F .

Therefore, at most O
(
|F|min{∆, logn

π(f)}
)

edges are added to S. Note that, if an edge e′ ∈ S

is not in set F , we only spend O(1) time for it in subroutine UpdateDataStructures(e′).

Thus, the total time spent on all edges not in F is indeed O
(
|F|min{∆, logn

π(f)}
)
. On the

other hand, for each edge e ∈ F , the most expensive operation is to find set He which

Claim 8.8 shows can be done in O(|He| log ∆) time. Therefore, the total running time before

UpdateAdjacencyLists() can be bounded by O
(
|F|min{∆, logn

π(f)} log ∆
)
.

Next, in the UpdateAdjacencyLists(), we only iterate over all edges inA and update

their position in their end-points. This takes O(|A| log ∆) time. Note that by Observation 8.5,

any edge e′ ∈ A is adjacent to an edge e ∈ F and kt−1(e′) ≥ π(f). This means that e′ ∈ He
and by Claim 8.8:

Observation 8.9. W.h.p., |A| ≤ O
(
|F|min{∆, logn

π(f)}
)
.

Therefore, the overall running time is indeed O
(
|F|min{∆, logn

π(f)} log ∆
)

as claimed in

Lemma 8.3.

8.2.4 Putting Everything Together: Proof of Theorem 8.1

Before proving Theorem 8.1 we need the following high probability bound of O(log n) on |F|

which we prove in Section 8.2.5.

Claim 8.10. Let G and G′ be two graphs that differ in only one edge and let π be a random

ranking on their edges. Then, w.h.p., there are at most O(log n) edges that have different

MM-statuses in GMM(G, π) and GMM(G′, π).

Now, we are ready to prove Theorem 8.1.

Theorem 8.1 (restated). There is a data structure to maintain a random greedy maxi-

mal matching against an oblivious adversary in a fully-dynamic graph that per update, takes

140

O(log2 ∆ · log2 n) expected time. Furthermore, per update, O(1) in expected edges leave or are

added to the matching.

Proof. We use Algorithm 12. Combination of Lemma 7.4, and the fact that |F| ≤ O(log n)

w.h.p. due to Claim 8.10, bounds the update-time of this algorithm, w.h.p., by

O(log ∆ log n) min

{
∆,

log n

π(f)

}
= O(log ∆ log2 n) min

{
∆,

1

π(f)

}
.

Since π(f) is chosen from [0, 1] uniformly at random, E
[

min
{

∆, 1
π(f)

}]
= O(log ∆). Thus,

the total running time is O(log2 ∆ log2 n) in expectation, as required by the theorem.

For the adjustment-complexity, similar to MIS, it is shown in [64, Theorem 1] that

RGMIS requires O(1) expected adjustments under vertex updates. On the line-graph, this

implies that if an edge is added or removed, the number of changes to RGMM is O(1) in

expectation; concluding the proof.

8.2.5 Deferred Proofs

Observation 8.5 (restated). For any edge e ∈ A, the following properties hold:

1. kt−1(e) ≥ π(f) and kt(e) ≥ π(f).

2. if e 6= f , then e has a neighbor e′ such that π(e′) < π(e) and e′ ∈ F .

Proof of part 1. Let U denote the set of edges e in E with π(e) < π(f). Consider the subgraph

only containing these edges. Since the matching is constructed greedily on the lower rank

edges first, the set of matching edges in U does not change after the update. Let MU denote

the matching edges in U . Note that any edge e with kt−1(e) < π(f) is incident to an edge e′

in MU . Since e and e′ are still incident after the update and that updating f does not change

k(e′) we have kt(e) = kt−1(e). This means that for each edge e with kt−1(e) < π(f), we have

kt(e) = kt−1(e) and thus e cannot be in A by definition. By a similar argument, for any edge

e with kt(e) < π(f) we also have kt−1(e) = kt(e) and thus e 6∈ A.

Proof of part 2. The fact that e ∈ A means that eliminator of edge e changes after the

update. Let e′ be its eliminator before the update. By definition of the eliminator, for e 6= f

we have e ∈ A iff the matching status of at least an edge incident to e with rank at most

π(e′) changes. This means that if e is not incident to any edge in F , then e /∈ A.

141

Claim 8.11. Let e = (u, v) be the lowest-rank edge in S at the start of an arbitrary iteration.

Subroutine UpdateDataStructures(e) correctly updates k(e) and m(e) in constant time

assuming that Invariants 8.6 and 8.7 hold by this iteration.

Proof. By definition, we know that eliminator of edge e is its lowest-rank edge in N(v)∪N(u)

that is in the matching after the update. By Invariants 8.7 min(k(u), k(v)) is the rank of an

edge who has the lowest-rank amongst the edges e′ in N(v)∪N(u) with m(e′) = 1. Moreover,

by Invariants 8.6, we know that for any edge e′ with π(e′) < π(e), we have m(e′) = mt(e
′).

This means that min(k(u), k(v)) < π(e) iff there is at least one edge adjacent to e that is

in the matching after the update. In the subroutine UpdateDataStructures(e), we use

this condition to determine m(e). Further in the subroutine if m(e) = 1 we set k(e) = π(e)

and otherwise set it to min(k(u), k(v)) which is correct by definition of eliminator. To sum

up, subroutine UpdateDataStructures(e) correctly updates k(e) and m(e) for edge e the

lowest-rank edge in S.

Observation 8.12. Let e and e′ respectively denote two edges removed from S in two con-

secutive iteration of the algorithm in Line 9. We have π(e) < π(e′).

Proof. Let Si and Si+1 respectively denote set S at the beginning of iteration i and set S at

the beginning of iteration i+ 1 and let ei and ei+1 be the lowest-rank edges in these sets. We

know that ei+1 is either inserted to S in iteration i or that it is in set Si. Observe that any

edge added to S in the i-th iteration has rank lower than π(ei) and that ei is the lowest-rank

vertex in Si. As a result π(ei) < π(ei+1).

Claim 8.13. Let e be the lowest-rank edge in S in an arbitrary iteration i of the algorithm.

Assuming that Invariants 8.6, and 8.7 hold at the start of iteration i we have:

1. If S = ∅ at the end of iteration i, then for any edge e we have k(e) = kt(e), and

m(e) = mt(e) and for any vertex v we have k(v) = kt(v).

2. If S 6= ∅ at the end of iteration i, then Invariants 8.6 and 8.7 hold at the start of

iteration i+ 1 as well.

Proof. By Claim 8.11, we know that by the end of iteration i, for any edge e′ with π(e′) ≤ π(e)

we have m(e′) = mt(e
′), and k(e′) = kt(e

′). Let g be the lowest-rank edge in A whose k(g) or

m(g) are not updated at the end of iteration i. We show that if such an edge exists it is in set

S. Note that by Observation 8.5, edge g has at least one incident edge g′ where π(g′) < π(g)

142

and g′ ∈ F . Since g is the lowest-rank edge whose k(g) or m(g) are not updated, we get that

k(g′) or m(g′) are updated. This means that there was an iteration j < i of the algorithm in

which g′ was the lowest-rank edge in S since kt(g
′) = kt−1(g′) and that in each iteration we

only update kt() for the lowest-rank edge in S. Since g′ is in F in iteration j, the algorithm

adds all the edges in He to set S in that iteration. By definition of He, this set includes edge

g. Also, note that by Observation 8.12, the rank of vertices removed from set S is increasing;

thus g is still in set S in iteration i. This means that if set S is empty then for all edges g, we

have m(g) = mt(g) and k(g) = kt(g) and if it is nonempty Invariants 8.6 holds in the next

iteration.

To complete the proof it suffices to show that if S is empty at the end of iteration i, for

any vertex v we have k(v) = kt(v) and that otherwise Invariants 8.7 still holds at iteration

i + 1. Note that in the i-th iteration we do not change m(e′) if e′ 6= e. Thus, given that

Invariants 8.7 holds at the beginning of iteration i, for any vertex v that is not incident to e

we have k = kt(v) at the end of the iteration as well. Now consider vertex u that is incident

to e. If e is not flipped or if k(u) < π(e) the algorithm does not change k(u) which is correct

by definition of k(u). Therefore, we only need to consider the case that e is flipped and

k(u) ≥ π(e). In this case, if mt(e) = 1, the it is be the lowest-rank edge adjacent to u with

m(.) = 1. Algorithm correctly detects this and sets k(u) = π(e) in this scenario. Further,

if mt(e) = 0 (which means mt−1(e) = 1), then there is no other edge adjacent to u with

m(.) = 1 in which case, as well, the algorithm correctly sets k(u) = ∞. We achieved this

from the fact that each vertex has at most one edge with mt−1(.) = 1 and by Invariants 8.6

any edge u1 with a higher rank than u has k(u1) = kt−1(u1). To sum up, Invariant 8.7 still

holds at the end of iteration i and the proof of the claim is completed.

Claim 8.8 (restated). At any iteration i, with probability 1 − n−(c+1), set He has size

O(min{∆, logn
π(f)}) and can be constructed in time O(|He| log ∆).

Proof. Size of He. Observe that if He is defined, then as assured by the condition in Line 5

of Algorithm 12, e ∈ F ⊆ A thus by Observation 7.6, kt−1(e) ≥ π(f). Furthermore, by

definition, every edge e′ ∈ He has kt−1(e′) ≥ π(f). This means that if we take RGMM of

Gt−1 induced on edges with rank in [0, π(f)) and remove them and their neighbors from the

graph, e and all of its neighbors in He will survive. Recall that the adversary is oblivious and

the graph Gt−1 and random permutation π are chosen independently. Therefore, applying

Lemma 8.4 on graph Gt−1 with p = π(f) bounds |He| by O(π(f)−1 log n) w.h.p. Moreover,

clearly |He| ≤ 2∆− 2 since all edges in it are incident to e, concluding the bound on the size

143

of He.

Construction of He. Note that we do not change the adjacency lists N(.) stored on the

vertices until the very last line of Algorithm 12. Therefore, for any vertex v, we have N(v) =

Nt−1(v) before this line. This means that throughout the algorithm, for any edge e = (u, v)

we can iterate over edges in N(u) and N(v) and find all edges e′ with kt−1(e′) ≥ π(a); all

these edges will belong to He. Thus the total time required is O(|He| log ∆). Note that this

is possible since N(v) and N(u) are BSTs indexed by kt−1(.) of the elements in them but

comes at the cost of an extra O(log ∆) factor as these BSTs can have size up to ∆.

Combining all these claims, we can prove Lemma 8.3.

Lemma 8.3 (restated). There is an algorithm to update GMM(G, π) and the data structures

required for it after insertion or deletion of any edge f = (a, b) in

O

(
|F|min

{
∆,

log n

π(f)

}
log ∆

)
time, w.h.p.

Proof. Correctness: We first show that when set S becomes empty, for any edge e we have

k(e) = kt(e), and m(e) = mt(e) and for any vertex v we have k(v) = kt(v). To do so, we will

use proof by induction and show that Invariants 8.6 and 8.7 hold throughout the algorithm.

This proves our claim since by Observation 8.12 if both invariants hold in the last iteration of

the algorithm, then when set S becomes empty the data structures k(.) and m(.) are updated

for all edges and vertices. By Observation 8.5, for any edge e′ with π(e′) < π(f) we have

m(e′) = mt(e
′) and k(e′) = kt(e

′) which means that Invariant 8.6 holds in the first iteration.

Further, Invariant 8.7 holds since m(.) of none of the edges has changed yet. This gives us the

base case of the induction. Moreover, the induction step is a direct result of Claim 7.25 which

states that if both invariants hold in an arbitrary iteration they hold in the next iteration

given that S is nonempty.

To complete the prove of correctness, we need to show that when the algorithm ter-

minates, for any vertex v, we have N(v) = Nt(v). Subroutine UpdateAdjacencyLists()

first modifies the adjacency lists of vertices a and b by adding e to them if e is to be added

or deleting it otherwise. Note that as we showed, when the algorithm runs this subrutine,

for any edge e we already have k(e) = kt−1(e), thus set A is also updated. Therefore, Al-

gorithm 12, correctly updates the adjacency lists by iterating over edges in A and updating

their index in the adjacency lists of their end-points.

144

Running Time: First, note that by Claim 8.8, with probability at least 1 − n−c, the

size of He for any edge e is O(min{∆, logn
π(f)}) and constructing that takes time O(log ∆ ·

min{ logn
π(f) ,∆}). Moreover, by Observation 8.12, we know that each edge is the lowest-

rank edge in set S in at most one iteration. Putting these facts together gives us that

the number of iterations of the algorithm is O(|F| ·min{ logn
π(f) ,∆}) with probability at least

1 − n−c. We also know by Claim 8.11 that subroutine UpdateDataStructures(e) takes

O(1) time. Therefore, the total running time of the algorithm until set S becomes empty

is O(|F| · log ∆ · min{ logn
π(f) ,∆}) with probability at least 1 − n−c. Further, subroutine Up-

dateAdjacencyLists() takes O(|A| log ∆) time which by Observation 8.9 is bounded by

O(log ∆ ·min{ logn
π(f) ,∆}) with probability at least 1− n−c.

Claim 8.10 (restated). Let G and G′ be two graphs that differ in only one edge and let π be

a random ranking on their edges. Then, w.h.p., there are at most O(log n) edges that have

different MM-statuses in GMM(G, π) and GMM(G′, π).

Proof. Assume without loss of generality that G′ is obtained by removing an edge e from G

and let F be the set of edges with different MM-statuses in GMM(G, π) and GMM(G′, π).

We first show that: (1) Each edge e ∈ F with e 6= f , has a lower-rank neighboring edge in

F . (2) The edges in F form either a single path or a single cycle.

Proof of (1) directly follows from Observation 8.5 part 2. For (2), observe that each

edge in F is in at least one of the two matchings GMM(G, π) and GMM(G′, π). Therefore,

each vertex has at most two incident edges in F ; meaning that each connected component

in F is indeed either a cycle or a path. To see why there cannot be more than one such

connected component, observe that in this case, at least one connected component does not

include f . Let g be the minimum-rank edge in this component. For g, (1) cannot hold which

is a contradiction.

Now, we show that |F| = O(log n). To do this, we provide a reduction to the parallel

round complexity of RGMM.

GMM can be parallelized, just like GMIS as described in Section 7.4.3, in the following

way: In each round, all edges that hold the locally minimum rank among their neighbors join

MM, then we remove them and their neighboring edges. It is known from [89] that if ranking

π over the edges is chosen randomly, then it takes O(log n) rounds until we find a maximal

matching, with probability 1− n−c for any constant c > 1.

We prove that the parallel round-complexity of RGMM is at least Ω(|F|), implying

145

that w.h.p. |F| = O(log n) as desired. To do this, observe that by properties (1) and (2)

above, there should be a monotone path P = (e1, . . . , ek) in F where π(ei) < π(ei+1) for any

i ∈ [k − 1] and where k = Ω(|F|). (Just take the longest path in F \ {f}, by (1) it has size

Ω(|F|) and by (2) it is monotone.) Furthermore, since each edge in P is in F and the edges

in F belong to exactly one of GMM(G, π) and GMM(G′, π), the edges in P have to alternate

between the two matchings. Suppose w.l.o.g. that the odd ones belong to GMM(G, π). Now,

take edge w2i+1 for any i. We show that it takes at least i parallel rounds until this edge joins

GMM(G, π). For w2i+1 to join the matching, its lower rank neighbor w2i should be removed

so that w2i+1 becomes the local minimum edge. This does not happen until w2i−1 joins the

matching since w2i−1 and w2i+1 are the only incident edges to w2i that are in GMM(G, π).

Now, a simple induction implies that it takes at least i rounds until w2i+1 joins the matching,

and thus the parallel round complexity is at least Ω(k) = Ω(|F|), which as described, implies

|F| = O(log n) w.h.p.

146

Chapter 9

Fully Dynamic Approximate Matching

The problem of maintaining a large matching in the dynamic setting has received significant

attention over the last two decades (see [135, 22, 132, 102, 58, 55, 147, 57, 56, 65, 10, 53] and

the references therein). As we saw in Chapter 8, a maximal matching can be maintained in

polylogarithmic time or even a constant time if we allow amortization [147]. This immediately

gives a 2-approximation of maximum matching. In a sharp contrast, however, we have little

understanding of the update-time-complexity once we go below 2 approximation. A famous

open question of the area, asked first1 in the pioneering paper of Onak and Rubinfeld [135]

from 2010 is:

“Can the approximation constant be made smaller than 2 for maximum matching [while

having polylogarithmic update-time]?” [135]

A decade later, we are still far from achieving a polylogarithmic update-time algorithm.

Prior to the algorithm of this chapter, the fastest result for maintaining a matching with

a better-than-2 approximation factor was presented by Bernstein and Stein [52].2 Their

algorithm handles updates in O(m1/4) time where m denotes the number of edges in the

graph. However, a notable follow-up result of Bhattacharya, Henzinger, and Nanongkai [55]

hinted that we may be able to achieve a faster algorithm. They showed that in n-vertex

bipartite graphs, for any constant ε > 0, there is a deterministic algorithm with amortized

update-time O(nε) that maintains a 2 − Ω(1) approximation of the size of the maximum

matching (the algorithm maintains a fractional matching, but not an integral one).

In light of the result of Bhattacharya et al. [55], two main questions remained open:

First, is it possible to maintain the matching in addition to its size? Second, can the result be

extended from bipartite graphs to general graphs? We resolve both questions in the affirmative:

1See also [54, Section 4], [52, Section 7] or [65, Section 1].
2The algorithm of Bernstein and Stein remarkably achieves an (almost) 1.5 approximation.

147

Theorem 9.1. For any constant ε ∈ (0, 1), there is a randomized fully-dynamic algorithm

that with high probability maintains a 2−Ωε(1) approximate maximum matching in worst-

case update-time O(∆ε) + polylog n under the standard oblivious adversary assumption.

Here, ∆ denotes the maximum degree in the graph. Also the precise approximation factor

constant depends on ε.

Compared to the algorithm of Bhattacharya et al. [55], our algorithm, at the expense of

using randomization, maintains the matching itself, handles general graphs, and also improves

the update-time from O(nε) amortized to Õ(∆ε) worst-case. In addition, our algorithm is

arguably simpler.

Similar to other randomized algorithms of the literature, we require the standard obliv-

ious adversary assumption. The adversary here is all powerful and knows the algorithm, but

his/her updates should be independent of the random bits used by the algorithm. Equiva-

lently, one can assume that the sequence of updates is fixed adversarially before the algorithm

starts to operate.

9.1 Our Techniques

In this section, we provide an informal overview of the ideas used in our algorithm for The-

orem 9.1 and the challenges that arise along the way.

A main intuition behind the efficient (randomized) 2-approximate algorithms of the

literature is essentially “hiding” the matching from the adversary through the use of ran-

domization. For instance if we pick the edges in the matching randomly from the dense

regions of the graph where we have a lot of choices, it would then take the adversary (who

recall is unaware of our random bits) a lot of trials to remove a matching edge. A natural al-

gorithm having such behavior is random greedy maximal matching (RGMM) which processes

the edges in a random order and greedily adds them to the matching if possible. Indeed we

showed in Chapter 8 that it takes poly(log n) time per edge update to maintain a RGMM.

Unfortunately, exactly the feature of RGMM (or of previous algorithms based on the

same intuition) that it matches the dense regions first prevents it from obtaining a better-

than-2 approximation. A simple bad example is a perfect matching whose one side induces a

clique (formally, a graph on vertices v1, . . . , v2n, whose edge set consists of a clique induced

on v1, . . . , vn and edges vivi+n for 1 ≤ i ≤ n). The RGMM algorithm, for instance, would

pick almost all of its edges from the clique, and thus matches roughly half of the vertices

148

while the graph has a perfect matching.

To break this 2 approximation barrier, our starting point is a variant of a streaming

algorithm of Konrad, Magniez, and Mathieu [116]. The algorithm starts by constructing a

RGMM M0 of the input graph G. Unless M0 is significantly larger than half of the size of the

maximum matching opt of G, then nearly all edges of M0 can be shown to belong to length-3

augmenting paths in M0 ⊕ opt. Therefore to break 2 approximation, it suffices to pick a

constant fraction of the edges in M0, and discover a collection of vertex disjoint length-3

paths augmenting them. Konrad et al. [116] showed that this can be done by finding another

RGMM, this time on a subgraph G′ of G whose edges have one endpoint that is matched in

M0 and one endpoint that is unmatched (though for these edges to augment M0 well, it is

crucial that not all such edges are included in G′).

The algorithm outlined above shows how to obtain a 2− Ω(1) approximate maximum

matching by merely running two instances of RGMM. Given that we know how to maintain

a RGMM in polylogarithmic update time from Chapter 8, one may wonder whether we

immediately get a similar update-time for this algorithm. Unfortunately, there is a rather

serious drawback. Note that the second stage graph G′ is adaptively determined based on

matching M0. Particularly, a single edge update that changes matching M0 may lead to

deletion/insertion of a vertex (along with its edges) in the second stage graph G′. While we

can handle edge updates in polylogarithmic time, the update-time for vertex updates is still

polynomial (in the degree of the vertex being updated). Therefore, the algorithm, as stated,

requires an update-time of up to Õ(∆).

To get around the issue above, our first insight is a parametrized analysis of the update-

time depending on the structure of the edges in M0. Suppose that matching M0 is constructed

by drawing a random rank π0(e) ∈ [0, 1] independently on each edge e and then iterating over

the edges in the increasing order of their ranks. We show that the whole update-time (i.e.

that of both the first and the second stage matchings) can be bounded by Õ(ρ), where

α = max
e∈M0

π0(e), β = min
e∈M0

π0(e), and ρ =
α

β
.

The reason is as follows. For an edge update e, the probability that it causes an update to

matching M0, is upper bounded by α. (If rank of e is larger than the highest rank ever in

M0, then e 6∈ M0 and thus its insertion/deletion causes no update to M0.) On the other

hand, in case of an update to M0, the cost of a vertex update to the second stage graph can

be bounded by its degree, which we show can be bounded by Õ(1/β) using the sparsification

property of RGMM (Section 3.4) applied to the first stage matching M0. Thus, the overall

149

update time is indeed Õ(α · β−1) = Õ(ρ).

The analysis highlighted above, shows that as the rank of edges in the first stage

matching M0 get closer to each other, our update-time gets improved. In general, this ratio

can be as large as O(∆). A natural idea, however, is to partition M0 into subsets S1, . . . , S1/ε

such that the edges in each subset, more or less, have the same ranks (i.e. a max over min

rank ratio of roughly ∆ε). We can then individually construct a second-stage graph Gi for

each Si, find a RGMM Mi of it and use it to augment Si (and thus M0). Since there are

only 1/ε groups, there will be one that includes at least ε = Ω(1) fraction of edges of M0.

Therefore, augmenting a constant fraction of edges in this set alone would be enough to break

2 approximation.

However, another technical complication arises here. Once we choose to augment only

a subset Si of the edges in M0, with say
maxe∈Si π0(e)

mine∈Si π0(e) ≤ ∆ε, we cannot bound the update-

time by Õ(∆ε) anymore. (The argument described before only works if we consider all the

edges in M0.) The reason is that, normally, in the second stage graph Gi we would like

to have edges that have one endpoint in Si and one endpoint that is unmatched in M0 so

that if both endpoints of an edge e ∈ Si are matched in the matching of Gi, then we get a

length-3 augmenting path of M0. This makes this second stage graph Gi very sensitive to

the precise set of vertices matched/unmatched in the whole matching M0 (as opposed to only

those matched in Si) and this would prevent us from using the same argument to bound the

update-time by Õ(∆ε).

To resolve this issue, on a high level, we also consider any vertex that is matched in M0,

but its matching edge has rank higher than those in Si, as “unmatched” while constructing

graph Gi (see Algorithm 13). This will allow us to argue that the update-time is Õ(∆ε).

The downside is that not all found length 3 paths will be actual augmenting paths of M0.

Fortunately, though, we are still able to argue that the algorithm finds sufficiently many actual

augmenting paths for M0 and thus achieves a 2− Ω(1) approximation (see Section 9.3).

9.2 A Static Algorithm

In this section we describe a static algorithm for finding an approximate maximum matching.

We show in Section 9.3 that the algorithm provides a 2 − Ω(1) approximation and show in

Section 9.4 that it can be maintained in update-time Õ(∆ε).

150

Intuitive explanation of the algorithm. We start with a RGMM M0. After that, we

partition the edge set of M0 into 1/ε partitions S1, . . . , S1/ε such that roughly the maximum

rank over the minimum rank in each partition is at most ∆ε. Then, focusing on each partition

Si, we try augmenting the edges of Si by finding two random greedy matchings of subgraphs

G′Ai and G′Bi that are determined based on set Si. Roughly, each edge in G′Ai (and similarly

in G′Bi) has one endpoint that is matched in Si—this is the edge to be augmented—and

one endpoint that is either unmatched or matched after the edges in Si are processed in the

greedy construction of M0. Therefore if for an edge uv ∈ Si, its endpoint v is matched via

an edge vx in the matching of G′Ai and u is matched via an edge uy in the matching of G′Bi ,

and in addition x and y are unmatched in M0 then uy, uv, vx will be a length 3 augmenting

path of M0.

Algorithm 13: An algorithm for (2− Ω(1))-approximate maximum matching.

1 Input: Graph G = (V,E) and a parameter ε ∈ (0, 1).
2 M0 ← GMM(G, π0) where π0 is a random permutation of E.
3 for any i ∈ {1, 2, . . . , 1/ε} do
4 if i < 1/ε then

5 Si ←
{
e | e ∈M0 and π0(e) ∈

(
∆−iε,∆−(i−1)ε

]}
. // We call Si “partition i”.

6 else
7 S1/ε ←

{
e | e ∈M0 and π0(e) ∈

[
0,∆−1+ε

]}
.

8 Ui ← {u | for any edge uv either uv 6∈M0 or uv ∈ ∪i−1
j=1Sj}.

// Ui includes nodes that are unmatched in M0 or matched by edges in S1, . . . , Si−1.

9 For each edge uv ∈ Si put its endpoint with lower ID in set V A
i and the other in V B

i .
// The use of IDs is just to simplify the statements. Any arbitrary way of putting one endpoint of

the edge in V Ai and the other in V Bi would work.

10 Partition Ui into UAi and UBi by each node picking its partition independently and
u.a.r.

11 Sample each edge in Si independently with probability p := 0.03.
12 V ′Ai ← vertices in V A

i whose edge in Si is sampled.
13 V ′Bi ← vertices in V B

i whose edge in Si is sampled.
14 G′Ai ← G[V ′Ai × UAi].
15 G′Bi ← G[V ′Bi × UBi].
16 Mi ← GMM(G′Ai , πi) ∪ GMM(G′Bi , πi) where πi is a fresh random permutation of E.

17 Return the maximum matching of graph (M0 ∪M1 ∪ . . . ∪M1/ε).

9.3 Approximation Factor of Algorithm 13

In this section, we prove that the approximation factor of Algorithm 13 is at most 2− Ω(1)

given that ε is a constant.

151

We fix one arbitrary maximum matching of graph G and denote it by opt; recall that

|opt| = µ(G). Having this matching opt, we now call an edge e ∈M0 3-augmentable if it is

in a length 3 augmenting path in opt⊕M0. Observe that since opt cannot be augmented,

this augmenting path should start and end with edges in opt and thus edge e has to be in

the middle.

The following lemma is crucial in the analysis of the approximation factor. Basically,

it says that for any partition Si where most of edges in Si are 3-augmentable (which in fact

should be the case for most of the partitions if |M0| is close to 0.5µ(G)), roughly p/4 fraction

of the edges in Si are in length 3 augmenting paths in Si⊕Mi. We emphasize that this does

not directly prove the bound on the approx factor as these length 3 augmenting paths in

Si ⊕Mi may not necessarily be augmenting paths in M0 ⊕Mi.

Lemma 9.2. For any i ∈ [1/ε] and any parameter δ ∈ (0, 1), if (1− δ) fraction of the edges

in Si are 3-augmentable, then in expectation, there are at least ((1−δ)p
4 − 4p2)|Si| edges in Si

where both of their endpoints are matched in Mi.

In order to prove this lemma, in Lemma 9.3 we recall a property of the greedy maximal

matching algorithm under vertex samplings originally due to [116, 115]. We note that the

property that we need is slightly stronger than the one proved in [115, Theorem 3] but follows

from a similar argument. Roughly, we need a lower bound on the number of vertices in a

specific vertex subset that are matched, while the previous statement only lower bounded the

overall matching size. We provide the complete proof in Appendix 9.5.

Lemma 9.3. Let G(V,U,E) be a bipartite graph, π be an arbitrary permutation over E, and

M be an arbitrary matching of G. Fix any parameter p ∈ (0, 1) and let W be a subsample of

V including each vertex independently with probability p. Define X to be the number of edges

in M whose endpoint in V is matched in GMM(G[W ∪ U], π); then

E
W

[X] ≥ p(|M | − 2p|V |).

Equipped with Lemma 9.3, we are ready to prove Lemma 9.2.

Proof of Lemma 9.2. Fix a partition Si which includes (1 − δ)|Si| 3-augmentable edges and

denote by Ti the subset of edges in Si that are 3-augmentable; implying that

|Ti| ≥ (1− δ)|Si|. (9.1)

Recall that each edge e ∈ Ti is the middle edge in a length 3 augmenting path in opt⊕M0

where opt is a fixed maximum matching of G. Define set optA (resp. optB) to be the subset

152

of edges uv in opt where one of their endpoints, say, v is in V (Ti) ∩ V A
i (resp. V (Ti) ∩ V B

i)

and the other endpoint u is in set UAi (resp. UBi).

We say an edge ab ∈ Ti is good if a is matched in optA and also b is matched in optB;

and use Y to denote the subset of edges in Ti that are good. We first claim that

E
UAi ,U

B
i

[|Y |] ≥ 1

4
|Ti|, (9.2)

where observe that here the expectation is only taken over the randomization in partitioning

Ui into UAi and UBi . To see this, fix an edge ab ∈ Ti and let au and bv be the edges in

opt that along with ab form a length 3 augmenting path. Observe that edge au ∈ optA if

u ∈ UAi and bv ∈ optB if v ∈ UBi . Since the partition of v and u is chosen independently

and u.a.r., there is a probability 1
4 that both these events occur, implying ab ∈ Y . Linearity

of expectation over every edge in Ti proves (9.2).

Now, consider graphs GAi := G[V A
i × UAi] and GBi := G[V B

i × UBi] and observe that

optA is a matching of GAi and optB is a matching of GBi . One can confirm that V ′Ai is

a random subsample of V A
i where for each v ∈ V A

i , Pr[v ∈ V ′Ai] = p. More importantly,

whether for a vertex v the event v ∈ V ′Ai holds is independent of which other vertices are in

V ′Ai . (Though we note that v ∈ V ′Ai is not independent of those vertices in V ′Bi .) Similarly,

V ′Bi can be regarded as a random subsample of V B
i wherein the vertices appear independently

from each other. As a result, graph G′Ai (resp. G′Bi) is essentially obtained by retaining a

random subsample of the vertices in the V A
i (resp. V B

i) partition of graph GAi (resp. GBi).

We can thus use Lemma 9.3 while fixing matching optA to get

E
[
of vertices in V (optA) ∩ V ′Ai matched in GMM(G′Ai , πi)

]
≥ p(|optA|−2p|V A

i |). (9.3)

Similarly,

E
[
of vertices in V (optB) ∩ V ′Bi matched in GMM(G′Bi , πi)

]
≥ p(|optB| − 2p|V B

i |).

(9.4)

Observe that E[|V (optA) ∩ V ′Ai |] = p|optA| since each edge in optA has one endpoint in

V A
i which is sampled to V ′Ai with probability p. Combined with (9.3) this means that

E
[
of vertices in V (optA) ∩ V ′Ai not matched in GMM(G′Ai , πi)

]
≤ p|optA| − p(|optA| − 2p|V A

i |) ≤ 2p2|V A
i | = 2p2|Si|. (9.5)

Similarly by (9.4),

E
[

of vertices in V (optB) ∩ V ′Bi not matched in GMM(G′Bi , πi)
]

≤ p|optB| − p(|optB| − 2p|V B
i |) ≤ 2p2|V B

i | = 2p2|Si|. (9.6)

153

By (9.2) we have 1
4 |Ti| expected good edges. Out of these, each edge ab ∈ Y is sampled,

i.e., a ∈ V ′Ai and b ∈ V ′Bi with probability p. Therefore, in expectation, there are a total

of p
4 |Ti| sampled good edges. Say a sampled good edge ab is wasted if a is unmatched in

GMM(G′Ai , πi) or b is unmatched in GMM(G′Bi , πi). Combined with (9.5) and (9.6) there are

at most 2p2|Si| + 2p2|Si| ≤ 4p2|Si| wasted edges. This means that the expected number of

sampled good edges that are not wasted is at least

p

4
|Ti| − 4p2|Si|.

Moreover, by (9.1), |Ti| ≥ (1 − δ)|Si|. Replacing this into the equation above, we get that

there are, in expectation, at least p
4(1−δ)|Si|−4p2|Si| = ((1−δ)p

4 −4p2)|Si| good edges that are

not wasted, i.e., both of their endpoints are matched in Mi = GMM(G′Ai , πi)∪GMM(G′Bi , πi)

as claimed in the lemma.

The following claim shows that there is a subset Si? that is “large enough” compared

to the size of matching M0 and is much larger than the total number of edges in previous

subsets S1, . . . , Si?−1.

Claim 9.4. There exists an integer i? ∈ [1/ε] such that

|Si? | ≥
1

213/ε
|M0| and |Si? | > 211

i?−1∑
i=1

|Si|.

Proof. Let i? be the smallest integer in [1/ε] for which

|Si? | ≥ 212i?− 13
ε |M0|, (9.7)

we show that both conditions should hold for i?. First, we have to prove that there is a choice

of i? ∈ [1/ε] satisfying (9.7). Suppose for the sake of contradiction that this is not the case;

then:

1/ε∑
i=1

|Si| <
1/ε∑
i=1

212i− 13
ε |M0| = 2

−13
ε |M0|

1/ε∑
i=1

212i � 2
−13
ε |M0|(2× 212/ε) < |M0|.

Observe that subsets S1, . . . , S1/ε partition the edges in M0 and thus it should hold that∑1/ε
i=1 |Si| = |M0|; implying that the equation above is indeed a contradiction, proving exis-

tence of i?.

The first inequality of the claim is automatically satisfied for i? due to (9.7) since

|Si? | ≥ 212i?− 13
ε |M0| > 2−

13
ε |M0|.

154

It thus only remains to prove the second inequality. For that, observe that since i? is the

smallest integer satisfying (9.7), then for any i < i? we have |Si| < 212i− 13
ε |M0|. This means

that

i?−1∑
i=1

|Si| <
i?−1∑
i=1

212i− 13
ε |M0| = 2

−13
ε |M0|

i?−1∑
i=1

212i � 2
−13
ε |M0|(2× 212(i?−1)) = 212i?−11− 13

ε |M0|.

Combining this with (9.7) we get

|Si? |∑i?−1
i=1 |Si|

>
212i?− 13

ε |M0|
212i?−11− 13

ε |M0|
= 211,

implying the second inequality of the claim as well.

Let us recall a folklore property that if maximal matching M0 is not already large

enough, then most of the edges in it are 3-augmentable.

Observation 9.5 (folklore). If |M0| < (1
2 + δ)µ(G), then at least (1

2 − 3δ)µ(G) edges in M0

are 3-augmentable.

Proof. See e.g. [115, Lemma 1] for a simple argument.

We are now ready to analyze the approximation factor. We prove that for δ =

1
1000×213/ε , the matching returned by Algorithm 13 has, in expectation, size at least (1

2 +

δ)µ(G). We first assume that |M0| < (1
2 + δ)µ(G) as otherwise matching M0 already achieves

the desired approximation factor. By Observation 9.5, this means that at least (1
2 − 3δ)µ(G)

edges of M0 are 3-augmentable; meaning that the number of edges in M0 that are not 3-

augmentable is at most

|M0| −
(

1

2
− 3δ

)
µ(G) ≤

(
1

2
+ δ

)
µ(G)−

(
1

2
− 3δ

)
µ(G) = 4δµ(G) ≤ 8δ|M0|. (9.8)

Let i? ∈ [1/ε] be the integer satisfying Claim 9.4. By (9.8) there are at most 8δ|M0| edges in

M0 and thus in Si? that are not 3-augmentable. Therefore,

of 3-augmentable edges in Si? ≥ |Si? | − 8δ|M0|

= |Si? | − 8
1

1000× 213/ε
|M0|

> |Si? | −
1

100
× |M0|

213/ε

≥ |Si? | −
1

100
× 213/ε|Si? |

213/ε
First inequality of Claim 9.4.

≥ 0.99|Si? |.

155

Since 0.99 fraction of the edges in Si? are 3-augmentable, by Lemma 9.2, there are at least(
0.99p

4
− 4p2

)
|Si? |

p=0.03
= 0.003825|Si? | > 0.003|Si? |

edges in Si? whose both endpoints are matched in Mi? . We would like to argue that these

form length 3 augmenting paths but note that an edge e ∈ Mi? may have an endpoint that

is already matched in subsets S1, . . . , Si?−1. However, the crucial observation here is that

since by the second inequality of Claim 9.4, we have |Si? | ≥ 211
∑i?−1

i=1 |Si| and each edge in

S1∪. . .∪Si?−1 can be connected to two edges in Mi? the number of these length 3 augmenting

paths that are also augmenting paths in opt⊕M0 is at least

0.003|Si? | − 2×
i?−1∑
i=1

|Si| ≥ 0.003|Si? | − 2× |Si
? |

211
> 0.002|Si? |.

Each of these augmenting paths can be used to increase size of M0 by one, therefore the final

matching has size at least

|M0|+ 0.002|Si? | ≥ |M0|+
0.002

213/ε
|M0| =

(
1 +

1

500× 213/ε

)
|M0| ≥

(
1 +

1

500× 213/ε

)
1

2
µ(G)

=

(
1

2
+

1

1000× 213/ε

)
µ(G),

which proves the approximation factor is 2− Ω(1) so long as ε > 0 is a constant.

9.4 Dynamic Implementation of Algorithm 13

In this section, we describe how we can maintain Algorithm 13 in update time O(∆ε +

polylog n).

9.4.1 Tools

We borrow two black-box tools from the previous works. The first one is a simple corollary

of the algorithm of Gupta and Peng [102], see also [51] for a proof of this corollary.

Lemma 9.6 ([102]). Let ∆′ be a fixed upper bound on the maximum degree of a graph at all

times. Then we can maintain a (1 + ε) approximate matching deterministically under edge

insertions and deletions in worst-case update time O(∆′/ε2) per update.

We use Lemma 9.6 only for the last step of Algorithm 13 in which we need to maintain

a maximum matching of M0∪M1∪ . . .∪M1/ε which is a graph with maximum degree O(1/ε).

We also use, as black-box, the following result that appeared first in [40] and we proved it in

Chapter 8.

156

Lemma 9.7. Let π be a random ranking where π(e) ∈ [0, 1] for each edge e is drawn uni-

formly at random upon its arrival. Then maximal matching GMM(G, π) can be maintained

under edge insertions and deletions in expected time O(log2 ∆ × log2 n) per update (without

amortization). Furthermore, for each update, the adjustment-complexity is in expectation

O(1) and w.h.p. O(log n).

9.4.2 Data Structures & Setup

Algorithm 13 computes two types of matchings: (1) Matching M0 = GMM(G, π0) which

is a standard random greedy maximal matching of the whole graph G. (2) Matchings

M1, . . . ,M1/ε which are computed on specific subgraphs of G. Observe in Algorithm 13

that each matching Mi for i ∈ {1, . . . , 1/ε} is the union of two random greedy matchings

GMM(G′Ai , πi) and GMM(G′Bi , πi). A crucial observation here is that these two graphs G′Ai

and G′Bi by definition are vertex disjoint. Therefore defining graph Gi to be the union of

these two graphs, Mi would be equivalent to GMM(Gi, πi).

Now we have 1
ε + 1 graphs G,G1, . . . , G1/ε and 1

ε + 1 independently drawn rankings

π0, π1, . . . , π1/ε. Therefore, if a priori these graphs were fixed and remained unchanged after

each edge insertion/deletion, we could use Lemma 9.7 to update each one of them in expected

time polylog n requiring only a total update-time of O(1
ε) ·polylog n. However, as highlighted

in Section 9.1 the challenge is that the vertex sets of graphs G1, . . . , G1/ε are adaptively

determined based on matching M0. That is, a single edge update that changes matching

M0 may lead to many vertex insertions/deletions to graphs G1, . . . , G1/ε that are generally

much harder to handle than edge updates. Therefore, we need to be careful about what to

maintain and how to do it to ensure these vertex updates can be determined and handled

efficiently.

Fixing the randomizations. To maintain the matching of Algorithm 13, we fix all the ran-

domizations required. There are two types of randomizations involved: (1) Randomizations

on the edges, such as the random rankings and edge samplings; as in Lines 2,16, and 11. (2)

Randomizations on the vertices; as in Line 10. We reveal the randomizations on the vertex

set in the preprocessing step as it is static. But we reveal the randomizations on the edges

upon their arrival. For completeness, we mention the precise random bits drawn below.

For each edge e, we draw the following upon its arrival:

157

is sampledi(e) ∈ {0, 1}: This is drawn for any i ∈ [1/ε] independently. It is 1 with

probability p and 0 otherwise. It determines the outcome of edge-sampling in Line 11

of the algorithm.

πi(e) ∈ [0, 1]: The rank of e in ranking πi. This is drawn for any i ∈ {0, . . . , 1/ε}.

And for each vertex v, in the pre-processing step, we draw:

partitioni(v) ∈ {A,B}: This is drawn for any i ∈ [1/ε] independently. It is A with

probability 0.5 and B otherwise. The value determines whether v would join UAi or

UBi if it is partitioned in Line 10 of the algorithm.

Data structures. Let us for simplicity define G0 = G. For any vertex v and any i ∈

{0, . . . , 1
ε} we maintain the following data structures:

ki(v): If v is not part of graph Gi or if it is unmatched in GMM(Gi, πi) then ki(v) = 1.

Otherwise, if e is the edge incident to v that is in matching GMM(Gi, πi) then ki(v) =

πi(e).

Ni(v): The set of neighbors of v in graph Gi. This set is stored as a self-balancing binary

search tree in which each neighbor u of v is indexed by πi(elimGi,πi(uv)). (If v is not

in the vertex-set of Gi then simply Ni(v) = ∅.)

9.4.3 The Update Algorithm

We run 1 + 1/ε instances of Lemma 9.7 for maintaining greedy matchings of G0, . . . , G1/ε.

Moreover, we run a single instance of Lemma 9.6 on the edges in union of matchings M0 ∪

. . . ∪M1/ε.

As mentioned previously, a single edge update to graph G0 may change the structure

of graphs G1, . . . , G1/ε and in particular may lead to vertex insertions or deletions in them.

Therefore, our main focus in this section is to show how we can detect these vertices that

join/leave graphs G1, . . . , G1/ε and their incident edges in these graphs efficiently. Before

that, we need the following lemma. The proof is a simple consequence of Lemma 8.4 and

thus we defer it to Section 9.6.

Lemma 9.8. Suppose that an edge e is inserted to or deleted from a graph Gi for some

158

i ∈ {0, . . . , 1/ε}. After updating matching GMM(Gi, πi) (e.g. by Lemma 9.7) and getting the

list L of edges that joined or left the matching, we can update ki(·) and Ni(·) accordingly in

expected time polylog n.

Consider insertion or deletion of an edge f . We use the following procedure to maintain

our data structures and finally the matching returned by Algorithm 13.

Step 1: Updating M0. We first update matching M0. This is done by Lemma 9.7 in

polylog n expected time. After that, we also update data structures k0(v) and N0(v) where

necessary using Lemma 9.8. There are two cases. If matching M0 changes after the update,

then we may have to update the vertex sets of graphs G1, . . . , G1/ε. This is the operation that

is costly and we handle it in the next steps. If M0 does not change, the only remaining update

is to see if f itself is part of a graph Gi and reflect that. This only takes polylogarithmic

time using Lemmas 9.7 and 9.8.

Step 2: Updating vertex-sets of G1, . . . , G1/ε. The vertex-set of each graph Gi is com-

posed of four disjoint subsets V ′Ai , UAi , V
′B
i , and UBi . One can confirm from Algorithm 13

that whether a vertex v belongs to one of these sets (and which one if so) can be uniquely

determined by knowing the edge incident to v that is in matching M0 or knowing that no

such edge exists. Therefore:

Observation 9.9. If after the update, a vertex v leaves or is added to the vertex-set of a

graph Gi, then there must exist an edge connected to v that either joined or left matching M0.

By Observation 9.9, to update the vertex-sets, it suffices to only iterate over vertices

whose matching edge in M0 has changed and determine which graph Gi they should belong

to. The procedure is a simple consequence of the way Algorithm 13 constructs these graphs

and also the randomizations fixed previously. We provide the details in Algorithm 14 for

completeness.

It has to be noted that we are only updating the vertex-sets in this step. In particular,

for a vertex v that e.g. joins graph Gi, we do not construct its adjacency list Ni(v) yet. This

159

is postponed to the next step after all the vertex sets are completely updated.

Algorithm 14: Updating vertex-sets of G1, . . . , G1/ε.

1 for any vertex v whose match-status in M0 has changed after the update do
2 if v is now unmatched then
3 `v ← 0.

4 else
5 Let e be the edge incident to v that is now in matching M0.
6 Let Sj be the partition to which e will be assigned in Algorithm 13 based on

π0(e).
7 `v ← j.

8 for any i ∈ [1/ε] do
9 if `v < i then

10 If partitioni(v) = A, then v ∈ UAi . Otherwise partitioni(v) = B, thus v ∈ UBi .

11 if `v = i then
// At this state, v should be matched in M0 through its incident edge e.

12 if is sampledi(e) = 0 then
13 Vertex v is not in the vertex-set of graph Gi.

14 else
15 If v is the lower-ID endpoint of e, then v ∈ V ′Ai . Otherwise, v ∈ V ′Bi .

16 if `v > i then
17 Vertex v is not in the vertex-set of graph Gi.

Step 3: Updating adjacency lists of G1, . . . , G1/ε and their matchings. The previ-

ous step updated the vertex-sets. Here, we update the adjacency lists and the matchings

M1, . . . ,M1/ε. Precisely, we update data structure Ni(v) for each vertex v and each i ∈ [1/ε]

where necessary. Note that for any vertex v, both k0(v) and adjacency list N0(v) were already

updated in Step 1.

First, for any vertex v that leaves a graph Gi, we immediately remove its incident edges

from the graph one by one. Each one of these should be regarded as edge deletions and thus

we can use Lemma 9.7 to update Mi. We then update ki and Ni data structures accordingly

using Lemma 9.8.

Next, for any vertex v that is added to the vertex set of a graph Gi, we have to

determine the set of its neighbors in this graph. To do so, we take the steps formalized as

Algorithm 15. A crucial observation to note before reading the description of Algorithm 15

is stated below. The proof is a direct consequence of the greedy structure of RGMM, thus

we defer it to Appendix 9.6.

Claim 9.10. Suppose that the edge f that is being inserted to/deleted from G is part of

160

matching M0 (if deleted before deletion and if inserted after insertion). Note that if this was

not the case, then updating f would not change the vertex sets of G1, . . . , Gk. Also assume

that f belongs to partition Sj of matching M0 in Algorithm 13. Then this update may only

affect vertex sets of graphs G1, . . . , Gj. In particular, any graph Gk with k > j remains

unchanged after insertion or deletion of f .

Claim 9.10 is algorithmically useful in the following way. Suppose that f ∈ Sj and let

α be the minimum rank considered to be in Sj in Algorithm 13. Then we can remove all

edges whose eliminator ranks are less than α from G, and the remaining graph will include

all edges that we have to consider for graphs G1, . . . , Gj . This, by Lemma 8.4 prunes the

degrees to Õ(α−1) and helps reducing the running time. See Algorithm 15 and Lemma 9.11

for the details.

Algorithm 15: Updating adjacency lists of G1, . . . , G1/ε.

1 Let f be the original edge that was inserted/deleted from G and suppose that it
changed matching M0 (otherwise, vertex-sets of G1, . . . , G1/ε will remain the same.)

2 Suppose that f ∈ Sj (if f was deleted, f ∈ Sj before deletion, and if inserted, f ∈ Sj
after it).

// Note that f has to be in M0 to change it once updated. Thus it should belong to a set Sj .

3 If j < 1/ε then let α← ∆−iε, otherwise if j = 1/ε let α← 0.
// α is the lower bound on edge ranks that get partitioned to Sj according to Algorithm 13.

4 for any vertex v and any i ∈ [1/ε] such that v joins the vertex set of Gi do
// We can detect these vertices efficiently by only going through the changes found in Step 2

without exhaustively checking all vertices in the graph.

5 Lv ← {u ∈ N0(v) | π0(elimG0,π0(uv)) ≥ α}
// Set Lv has size min{∆, O(α−1 logn)} by Lemma 8.4 and can be constructed in time Õ(|Lv|)

since all edges in N0(v) are already indexed by their eliminator ranks.

6 for any neighbor u ∈ Lv of v do
7 if (v ∈ V ′Ai and u ∈ UAi) or (v ∈ V ′Bi and u ∈ UBi) or (u ∈ V ′Ai and v ∈ UAi) or

(u ∈ V ′Bi and v ∈ UBi) then
8 Add u to Ni(v) and v to Ni(u).
9 Update matching Mi using Lemma 9.7 according to this edge insertion.

10 Update ki(·) and Ni(·) as necessary by this edge insertion using Lemma 9.8.

Step 4: Updating the final matching. Finally, recall that we run multiple instances of

Lemma 9.6 to maintain a (1 + ε) approximate maximum matching of graph M0 ∪ . . . ∪M1/ε

which will include our final matching. Throughout the updates above, we keep track of all

edges that leave/join these matchings and for each one of them we update this final matching

via Lemma 9.6.

161

9.4.4 Correctness & Running Time of Update Algorithm

In this section, as the title describes, we prove the correctness of the update algorithm above

and analyze its running time. Namely, we prove the following lemma.

Lemma 9.11. The update algorithm of previous section correctly updates all data struc-

tures and the matching and its expected running time per update without amortization is

O(∆ε polylog n).

Before that, let us show how we can actually turn this update-time to O(∆ε+polylogn)

as claimed by Theorem 9.1. To do so, given ε, we consider a smaller value for ε, say ε/2.

Then the update-time would be O(∆ε/2 polylog n). Now if ∆ε/2 � polylog n, then we already

have ∆ε/2 polylog n � ∆ε. Otherwise, ∆ is polylogarithmic and the whole update-time is

also polylogarithmic.

As another note, in Theorem 9.1 we state that the update-time is worst-case but

Lemma 9.11 bounds the expected update-time. To turn this into a worst-case bound, we use

the reduction of Bernstein et al. [53]. For the reduction to work, the crucial property is that

the update-time bound should hold in expectation but without any amortization, as is the

case here.

Proof of Lemma 9.11. It is easy to verify correctness of Steps 1, 2, and 4 which are actually

quite fast and take only polylog n time in total. We do provide the necessary details for

these steps at the end of this proof. However, the main component of the update-algorithm

is Step 3 which takes O(∆ε polylog n) time. We thus first focus on this step and analyze its

running time and correctness.

As before, assume that edge f is updated. If matching M0 does not change as a result of

this update, then the vertex sets of all graphs G1, . . . , G1/ε will remain unchanged. However,

if updating f changes M0, then f should be in M0 once in the graph. As in Algorithm 15,

we assume f ∈ Sj and let α be the minimum possible rank in Sj . By Claim 9.10, graphs

Gj+1, . . . , G1/ε remain unchanged. Also, one can confirm from Algorithm 13 that all edges

in graphs G1, . . . , Gj have eliminator rank of at least α in M0. Thus, for any vertex v added

to a graph Gi, the set Lv indeed includes all edges incident to v that may belong to Gi.

Moreover, by Lemma 8.4 this set Lv has size at most min{∆, O(α−1 log n)} and that can be

found in time Õ(|Lv|) since the neighbors of v in N0(v) are indexed by their eliminator-rank.

162

The overall update-time required for Step 3 is thus

(# of edges updated in M0)×min

{
∆, O

(
log n

α

)}
.

By Lemma 9.7, the number of edges that are updated in M0 is w.h.p. bounded by O(log n).

It remains to determine the expected value of the second factor in the running time above.

Let us use I1, . . . , I1/ε to denote the interval of ranks considered by Algorithm 13. That is,

I1/ε = [0,∆−1+ε] and for any i < 1/ε, Ii = (∆−iε,∆−(i−1)ε]. For edge f that is to be updated,

probability that π0(f) is in the ith interval is upper bounded by ∆−(i−1)ε. Moreover, given

that π0(f) is in the ith interval, then min{∆, α−1 log n} would be at most ∆iε log n. Thus:

E

[
min

{
∆, O

(
log n

α

)}]
≤

1/ε∑
i=1

Pr[π0(f) ∈ Ii]×E

[
min

{
∆, O

(
log n

α

)} ∣∣∣∣∣π0(f) ∈ Ii

]

≤
1/ε∑
i=1

∆−(i−1)ε ×∆iε log n ≤ ∆ε log n.

This means that the overall update-time required for Step 3 is O(∆ε polylog n).

Now, we focus on the other steps.

In Step 1, only matching M0 as well as the data structures related to it are updated.

These are correct and only take polylog n expected time by Lemmas 9.7 and 9.8.

In Step 2, we detect the updates to the vertex sets of G1, . . . , G1/ε. This is done

in Algorithm 14 by iterating over all vertices whose match-status in M0 is changed and

checking the conditions of Algorithm 13. By Observation 9.9, indeed any vertex who gets

added/deleted from any graph Gi should have an incident edge in M0 whose match-status

in M0 has changed. Therefore, we do discover all the updates. Moreover, for each vertex

encountered we only spend O(1) time in Algorithm 14 to detect which graph Gi it belongs

to and there are w.h.p. only O(log n) such vertices who have an edge with an updated

match-status in M0 by Lemma 9.7. Thus, the total running time for Step 2 is O(log n).

Finally, in Step 4, we update the final matching. The graph here is composed of O(1/ε)

matchings and thus has maximum degree O(1/ε). Therefore, each update by Lemma 9.6 takes

O(1/ε) = O(1) time. Moreover, an edge update to graph M0 w.h.p. affects at most O(log n)

edges by Lemma 9.7, each of these updated edges may lead to vertex insertions/deletions in

each graph Gi. But these propagated vertex insertions/deletions also affect at most O(log n)

edges in each of the graphs. Thus, the total number of edges that leave/join graph M1∪ . . .∪

M1/ε is at most O(log2 n), which is also the upper bound on the running time of Step 4.

163

9.5 Greedy Matching Size under Vertex Sampling

In this section, we prove Lemma 9.3 by extending the ideas presented in [115].

Proof. Consider the following equivalent process of constructing GMM(G[W ∪ U], π) that

gradually reveals the subsample W of V : We initialize matching M ′ ← ∅, initially mark each

vertex as alive, and then iterate over the edges in E in the order of π. Upon visiting an edge

vu with v ∈ V and u ∈ U , if either v or u is dead (i.e., not alive) we discard vu. Otherwise, we

call vu a potential-match and then reveal whether v belongs to W by drawing an p-Bernoulli

random variable. If v 6∈ W , no edge connected to v can be added to M ′, thus we mark v as

dead and discard vu. If v ∈ W , we add vu to M ′ and then mark both v and u as dead as

they cannot be matched anymore. One can confirm that at the end of this process, M ′ is

precisely equivalent to matching GMM(G[W ∪ U], π).

Let us fix an infinite tape of independent p-Bernoulli random variables ~x = (x1, x2, x3, . . .)

and use it in the following way: Once we encounter the i’th potential-match edge vu whose

vertex v is matched in matching M (this is the matching in the statement of lemma, not to

be confused with the greedy matching M ′ we are constructing), we use the value of xi as the

indicator of the event v ∈W . Observe that if xi = 1, then this edge uv will be added to M ′.

Moreover, define X :=
∑D

i=1 xi to be the number of 1’s in the tape that we encounter by the

end of process. (Here D is the upper bound on the number of times that we reveal a random

variable from the tape.) One can confirm that X is precisely the number of vertices in the

V -side of M that are matched in M ′: The precise quantity that lemma requires the lower

bound for.

Since each variable xi is 1 independently with probability p, we expect X to be pD.

However, note that the value of D itself is a random variable depending on the randomizations

revealed. Nonetheless, since D is a stopping time for the process, we can use Wald’s equation

[130] to argue that the expected value of X is indeed at least pE[D]. Therefore, it suffices to

show that E[D] ≥ (|M | − 2p|V |) to prove E[X] ≥ p(|M | − 2p|V |) as required by the lemma.

To see why E[D] is this large, observe that for any vertex v ∈ V that is matched in

M say via edge vu, we will encounter a potential-match edge unless u is matched to another

vertex. However, since each vertex in V is sampled into W with probability p, there are in

expectation at most p|V | vertices in W . Each such vertex can destroy at most two edges in

M . For the rest of |M |−2p|V | edges, we encounter at least a potential-match edge for which

we reveal a random variable of the tape. Thus E[D] ≥ |M |−p|V | and E[X] ≥ p(|M |−2p|V |)

164

as desired.

9.6 Missing Proofs

Proof of Lemma 9.8. Updating ki is easy. If for a vertex v, ki(v) has to be updated, then an

edge incident to it must be in L. On the other hand, there are at most two edges connected

to each vertex in L: At most one edge incident to it can join the matching and at most one

was in it to leave. Therefore, by simply iterating over the edges in L, we can update ki(v)

of any vertex necessary. This takes O(|L|) time, which by Lemma 9.7 is w.h.p. bounded by

O(log n).

Updating Ni is more tricky. If an edge joins the matching, it can now become the

eliminator of many other edges and if the eliminator of an edge uv changes, we have to

re-index u and v in each other’s adjacency list Ni(v). The crucial observation is that since

the matching is constructed greedily, the matching on edges with rank in [0, πi(e)) remains

unchanged after inserting/deleting e. As a result, if the eliminator of an edge had rank in

[0, πi(e)), it remains to be its eliminator. Therefore, all the changes occur in the subgraph

including edges with eliminator rank before the update was larger than πi(e). By Lemma 8.4

this graph has maximum degree min{∆, O(logn
πi(e)

)} w.h.p. Moreover, we can iterate over all

neighbors g of any edge f ∈ L with elimGi,πi(g) > πi(e) in time min{∆, 1
πi(e)
}polylog n. Re-

indexing each also takes at most time O(log ∆). Thus, the overall time required is, w.h.p.,

|L| ×E

[
min

{
∆,

1

πi(e)

}
polylog n

]
≤ E

πi(e)∼[0,1]

[
min

{
∆,

1

πi(e)

}]
polylog n

(W.h.p. |L| = O(log n).)

= O(log ∆)× polylog n = polylog n,

completing the proof.

Proof of Claim 9.10. Fix a graph Gk with k > j. We first prove no edge is removed from Gk

after updating f . Take an edge uv that is in Gk. By Algorithm 13, one endpoint of this edge,

say v w.l.o.g., should be matched in M0 via an edge that belongs to Sk. The other endpoint

u, is either unmatched in M0 or matched via an edge ux where ux ∈ S` for some ` < k. After

the update, v remains to be matched to the same vertex u in M0 for the following reason.

Since f ∈ Sj , uv ∈ Sk, and k > j, then π0(f) > π0(uv). As a result, since matching M0 is

constructed greedily by processing the edges in the increasing order of ranks, all the edges

processed before f that are in the matching will remain in the matching no matter if f is in

165

the graph or not, meaning that uv will remain in M0. Moreover, even though edge ux may

leave matching M0, the edge to which u will be matched after the update (if any) will have

rank at least π0(f). Thus u will remain in set Uk and as a result, the edge vu will remain in

Gk.

A similar argument shows that any edge uv in Gk after the update, should have been

in Gk before the update too. More precisely, if v is the part of edge uv that is matched in

Sk after the update, then its matching edge in M0 should have been in M0 before the update

too for precisely the same reason mentioned above. Moreover, no matter the update, if the

other endpoint u is in set Uk after the update, it should have been in Uk before the update

too. Implying that uv should have also been in Gk before the update.

Combination of the arguments of the two paragraphs above implies that graph Gk

remains exactly the same after and before the update.

166

Part IV

Streaming Algorithms

Chapter 10

Random-Order Streaming Matching

In this chapter, we study the maximum matching problem in the semi-streaming model of

computation [88] defined as follows.

Definition 10.1. Given a graph G = (V,E) with n vertices V = {1, . . . , n} and m edges in E

presented in a stream S = 〈e1, . . . , em〉, a semi-streaming algorithm makes a single pass over

the stream of edges S and uses O(n · polylog (n)) space, measured in words of size Θ(log n)

bits, and at the end outputs an approximate maximum matching of G.

The greedy algorithm for maximal matching gives a simple 1/2-approximation algorithm

to this problem in O(n) space. When the stream of edges is adversarially ordered, this is

simply the best result known for this problem, while it is also known that a better than

1
1+ln 2 ∼ 0.59-approximation is not possible [106] (see also [105, 96]). Closing the gap between

these upper and lower bounds is among the most longstanding open problems in the graph

streaming literature.

Going beyond this “doubly worst case” scenario, namely, an adversarially-chosen graph

and an adversarially-ordered stream, there has been an extensive interest in recent years in

studying this problem on random order streams. This line of work was pioneered in [116]

who showed that the 1/2-approximation of greedy can be broken in this case and obtained

an algorithm with approximation ratio (1/2 + 0.003) for this problem. Since [116], there has

been two main lines of attack on this problem. Firstly, [114, 90, 85] followed up on the

approach of [116] and improved the approximation ratio all the way to 6/11 [85]. In parallel,

[15] built on the sparsification approach of [51, 52] in dynamic graphs to achieve an (almost)

2/3-approximation but at the cost of Õ(n1.5) space, which is no longer semi-streaming. A

beautiful work of [50] then obtained a semi-streaming (almost) 2/3-approximation by showing

how a generalization of the sparsification approach in [15] can be found in Õ(n) space.

168

The 2/3-approximation ratio of the algorithm of [50] is the best possible among all prior

techniques for this problem: the first line of attack in [116, 114, 90, 85] is based on finding

length-3 augmenting paths and even finding all these paths does not lead to a better-than-

2/3-approximation1. The second line in [15, 50] is based on finding an edge-degree constrained

subgraph (EDCS) which hits the same exact barrier as there are graphs whose EDCS does not

provide a better than 2/3-approximation (see [51]). Finally, even for an algorithmically easier

variant of this problem, the one-way communication problem, which roughly corresponds

to only measuring the space of the algorithm when crossing the midpoint of the stream,

the best known approximation ratio is still 2/3 which is known to be tight for adversarial

orders/partitions [96].

Given this state-of-affairs, the 2/3-approximation ratio for random-order streaming

matching has emerged as natural barrier [114, 50]. In particular, [50] posed obtaining a

(2/3 + Ω(1))-approximation to this problem as an important open question. We resolve this

question in the affirmative in our work.

Our Contributions

Our main result is a semi-streaming algorithm for maximum matching in random-order

streams with approximation ratio strictly-better-than-2/3.

Theorem 10.2 (Main Result). Let G be an n-vertex graph whose edges arrive in a

random-order stream. For an absolute constant ε0 > 0, there is a single-pass streaming

algorithm that obtains a (2
3 + ε0)-approximate maximum matching of G using O(n log n)

space with high probability.

Theorem 10.2 breaks the 2/3-barrier of all prior work in [116, 114, 90, 15, 50, 85].

Moreover, even though the improvement over 2/3 is minuscule in this theorem (while we did

not optimize for constants, the bound on ε0 is only ∼ 10−14 at this point), it still proves that

(2⁄3)-approximation is not the “right” answer to this problem. This is in contrast to some

other problems of similar flavor such as one-way communication complexity of matching (on

adversarial partitions) [96, 13] or the fault-tolerant matching problem [13] which are both

solved using similar techniques (see the unifying framework of [13] based on EDCS) and for

both 2/3-approximation is provably best possible.

1The work of [85] also considers length-5 augmenting paths. However, these paths are used instead of

length-3 paths “missed” by the algorithm not in addition to them and thus the same shortcoming persists.

169

10.1 Overview of Techniques

Prior work: As stated earlier, there has been two main lines of attack on the streaming

matching problem in random-order streams. The first approach aims to find a large matching

of the graph G early on in the stream, and then spends the rest of the stream augmenting

this matching. For instance, [116] showed that in order for the greedy algorithm to fail to

find a better-than-1/2-approximation, the algorithm should necessarily pick many “wrong”

edges early on in the stream. As such, in instances where greedy is not beating the 1/2-

approximation itself, we already have an almost 1/2-approximation by the middle of the

stream, and we can thus focus on augmenting this matching in the remainder half to beat

1/2-approximation. The work of [114] then improved this result further by showing that a

modified greedy algorithm, when unsuccessful in obtaining a large matching itself, finds an

almost 1/2-approximation when only o(1)-fraction of the stream has passed (as opposed to

middle), which gives us more room for augmentation. Finally, [85] built on this approach

and further improved the augmentation phase.

The second approach to this problem was based on obtaining an EDCS, a subgraph

defined by [51, 52] and studied further in [13], that acts as a “matching sparsifier”. On a high

level, an EDCS is a sparse subgraph satisfying the following two constraints: (i) edge-degree

of edges in the EDCS cannot be “high”, while (ii) edge-degree of missing edges cannot be

“low”. These constraints ensure that an EDCS always contains an almost 2/3-approximate

matching of the graph and has additional robustness properties [51, 52, 15, 13, 50]. For

instance, [15] proved that union of several EDCS computed on different parts of a random

stream, is itself an EDCS for the entire stream. This allowed them to compute an EDCS of

the input in Õ(n1.5) space and directly obtain their almost 2/3-approximation. Finally, [50]

gave an elegant proof that weakening the requirement of EDCS allows one to still preserve

the almost 2/3-approximation but now recover this subgraph in only O(n log n) space. More

specifically, the algorithm of [50] first finds a subgraph only satisfying property (i) of the

EDCS in the first o(1) fraction of the stream, and then picks all (potentially) necessary edges

for satisfying property (ii) in the remainder; the proof then shows that this set of potentially

necessary edges is of size only O(n log n).

Our work: Our approach can be seen as a natural combination of these two mostly disjoint

lines of work. The first part comes from a better understanding of EDCS. We present a

rough characterization of when an EDCS cannot beat the 2/3-approximation, which shows

170

that in these instances, we can effectively ignore the second constraint of EDCS. As a result,

we obtain that the only way for the algorithm of [50] to fail to achieve a better-than-2/3-

approximation, is if it already picks an almost 2/3-approximation in the first o(1) fraction

of the stream. Note that this is conceptually similar to the first line of work on random-

order streaming matching, but the techniques are entirely disjoint. In particular, our proof

is a deterministic property of EDCS not a randomized property of a greedy algorithm on a

particular ordering.

We are now in the familiar territory of having a large matching very early on in the

stream, and we can spend the remainder of the stream augmenting it. The main difference

however is that starting from an almost 2/3-approximation matching, there is essentially no

length-3 paths for us to augment and we instead need to handle length-5 augmenting paths.

The key challenge is to find the middle edge of these length-5 augmenting paths. Indeed,

we note that the 2/3-approximation lower bound of [96] for adversarial order streams gives

away a 2/3-approximate matching early on for free, yet it is provably impossible to augment

it in the remainder of the stream using a semi-streaming algorithm. To get around this,

we crucially use the random arrival assumption again. Particularly, we regard any length-5

augmenting path whose middle edge arrives after its two endpoint edges as a “discoverable”

path and then find a constant fraction of such paths. Since the edges arrive in a random

order, a constant fraction of length-5 augmenting will be discoverable and thus we are able

to beat 2/3-approximation in our setting.

10.2 Background and Definitions

In this chapter, we will follow the general notation defined in Chapter 2. Here we mention

some additional notation that we use only in this chapter.

For integer k ≥ 1 and p ∈ [0, 1], we use B(k, p) to denote the binomial distribution with

parameters k and p. More formally, B(k, p) is the discrete probability distribution of the

number of successful experiments out of k experiments each with an independent probability

p of success.

Random-order streams. We consider the random-order streaming setting where the edges

of G arrive one by one in an order chosen uniformly at random from all possible orderings.

Let ei be the i-th edge that arrives in the stream. For any two parameters a, b satisfying

1 ≤ a < b ≤ m we use G[a, b] to denote the subgraph of G on vertex-set V and edge-set

171

{ea, . . . , eb}. We may also use G<a and G≥a respectively as shorthands for G[1, a − 1] and

G[a,m].

For the input graph G defined by the stream, we can assume w.l.o.g. that µ(G) ≥ c log n

for any desirably large constant c. The reason is that any graph can be easily shown to have at

most 2n ·µ(G) edges and if µ(G) = O(log n) then we can store the whole input in the memory

and report an optimal solution using O(n log n) space. We further assume throughout the

chapter that the number of edges m is known by the algorithm in advance. This is a common

assumption in the literature and can be removed via standard techniques by guessing m in

geometrically increasing values at the expense of multiplying the space by an O(log n) factor.

Edge degrees: For any edge e = (u, v) ∈ E, we define the edge-degree of e in G as deg(u) +

deg(v).

Hall’s witness set: We will use the following standard extension of the Hall’s marriage

theorem for characterizing maximum matching size in bipartite graphs.

Fact 10.3 (Extended Hall’s Theorem; cf. [103]). Let G = (L,R,E) be a bipartite graph and

|L| = |R| = n. Then,

max
(
|A| − |N(A)|

)
= n− µ(G),

where A ranges over L or R, separately. We refer to such set A as a witness set.

Fact 10.3 follows from Tutte-Berge formula for matching size in general graphs [150, 49]

or a simple extension of the proof of Hall’s marriage theorem itself.2

10.2.1 Bernstein’s Algorithm

We briefly review the parameters and guarantees of the algorithm of Bernstein [50] that we

use in our result. In the following, we slightly increase the constants in the parameters which

is needed for our results.

Definition 10.4 (Parameters). For some small ε ∈ (0, 1
2) to be determined later, let

λ :=
ε

128
, β+ := 64 · λ−2 log(1/λ), β− = (1− λ) · β+.

The algorithm of [50] proceeds in the following way:

2Simply add n−µ(G) vertices to each side of the graph and connect them to all the original vertices; then

apply original’s Hall’s theorem for perfect matching to this graph as this graph now has one.

172

Algorithm 3. The structure of Bernstein’s algorithm [50].

The algorithm of [50] proceeds in two phases as follows:

• Phase I terminates within the first εm edges of the stream. At the end of Phase I,
the algorithm constructs a subgraph H ⊆ G<εm such that (in addition to some other
properties) for all (u, v) ∈ H:

degH(u) + degH(v) ≤ β+.

Moreover, let U be the set of all edges in G≥εm such that

degH(u) + degH(v) < β−.

• In Phase II, the algorithm simply stores U in the memory and at the end of the stream
returns a maximum matching of H ∪ U .

The following lemma is all we need from [50].

Lemma 10.5 (Lemma 4.1 of [50]). There is a way of constructing the subgraph H of G<εm

such that with probability at least 1− n−3, |H ∪ U | = O(n log (n) · poly(1/ε)).

10.3 Finding an Almost (2/3)-Approximation Early On

We start by characterizing the tight instances of the algorithm of [50] (Algorithm 3). Roughly

speaking, we show that the only way for Algorithm 3 to end up with a (2/3)-approximation

is if in its Phase I it computes a subgraph H that already has an almost (2/3)-approximate

matching. This will then be used by our algorithm in the next section to obtain a strictly

better-than-(2/3)-approximation by augmenting this already-large matching.

We start by presenting and proving this result for bipartite graphs which is the main

part of the proof; we then extend the result to general graphs (with no considerable loss of

parameters for our purpose) using the probabilistic method approach of [13] for the original

EDCS.

10.3.1 Bipartite Graphs

In this section we prove the following structural result:

Theorem 10.6. Let λ ∈ (0, 1/2) and β− ≤ β+ be such that β+ ≥ 10
λ and β− ≥ (1 − λ)β+.

Suppose G = (L,R,E) is any bipartite graph and:

(i) H is a subgraph of G where for all (u, v) ∈ H: degH(u) + degH(v) ≤ β+; and

173

(ii) U is the set of all edges (u, v) in G \H such that degH(u) + degH(v) < β−.

Then, for any parameter δ ∈ (0, 1), either:

µ(H) ≥ (1− 4λ) · (2

3
− δ) · µ(G) or µ(H ∪ U) ≥ (1− 2λ) ·

(
2

3
+
δ2

18

)
· µ(G).

Let us define the following (see Figure 10.1 for an illustration):

• Let M∗ be a maximum matching of G and define M∗U := M∗ ∩ U and M∗
Ū

:= M∗ \ U .

• A is Hall’s theorem witness set in H ∪M∗U (as in Fact 10.3) and B := NH∪M∗U (A).

Without loss of generality we assume A ⊆ L and define Ā := L \A and B̄ := R \B.

We start with the following simple claim that follows easily from Fact 10.3.

Claim 10.7. For the witness set A:

(i) |Ā|+ |B| ≤ µ(H ∪ U).

(ii) There is a matching M̄ ⊆M∗
Ū

between A and B̄ in G with size |M̄ | = µ(G)−µ(H∪M∗U).

Proof. For part (i), note that |Ā|+ |B| = n− (|A| − |B|) = n− (n−µ(H ∪M∗U)) ≤ µ(H ∪U)

where the second to last equation is since A is a witness set in H ∪M∗U , and the last equation

is because M∗U is a subset of U .

For part (ii), consider the graph consisting of only M∗. Given that for the set A in this

new graph, we have |A| − |NM∗(A)| ≤ n− µ(G) by Fact 10.3, we get that |NM∗(A)| − |B| ≥

µ(G) − µ(H ∪M∗U). Moreover, since M∗ is a matching, these new neighbors of A are only

formed via a matching. Finally, as these edges are missing from H ∪M∗U , this matching from

A to B̄ should entirely belong to M∗
Ū

.

Consider any edge (u, v) ∈ M̄ defined in Claim 10.7. As M̄ ⊆ M∗
Ū

, by property (ii)

of Theorem 10.6 statement, we have, degH(u) + degH(v) ≥ β−. We arbitrarily remove the

edges on u and v until the above inequality becomes tight for every edge (since M̄ is a

matching, this is possible indeed). We let F be the remaining edges. Note that any edge

in F is incident on exactly one vertex of M̄ as there are no edges in H ∪M∗U between the

endpoints of M̄ . We record these properties as follows:

∀(u, v) ∈ M̄ : degF (u) + degF (v) = β− and |F | = |M̄ | · β−. (10.1)

In the following, we first give some illustrating examples that highlight the ideas for

proving Theorem 10.6, and then proceed to the formal proof.

174

A Ā

B B̄

S

S

M̄

T

T

F F

Figure 10.1: An illustration of the Hall’s witness set and our notation in the proof of Theo-

rem 10.6. Note that in particular, there are no edges between A and B̄ in H ∪M∗U , and the

matching M̄ belongs entirely to M∗
Ū

.

Illustrating Examples and The High Level Idea

By Claim 10.7, µ(H ∪ U) ≥ µ(G) − |M̄ |; thus, if M̄ is sufficiently smaller than µ(G)/3, we

already satisfy the second condition of Theorem 10.6 and we would be done. As such, in this

informal discussion, we are simply going to assume that |M̄ | = µ(G)/3. Moreover, we define

the endpoints of M̄ as S, and their neighborset of S in H as the set T . See Figure 10.1 for

an illustration. Let us now consider two extreme cases:

When degrees of edges in M̄ are “highly balanced”. That is, both endpoints of edges

in M̄ , namely, vertices in S, have degree β−/2 (recall that by Eq (10.1), edge-degree of every

edge in M̄ is β−). We claim that in this case, there is a large matching in H already that

satisfies condition one of Theorem 10.6.

Firstly, note that the degrees of vertices in T needs to be at most β+ − β−/2 ≤ (1 +

λ)β+/2 to satisfy property (i) of Theorem 10.6 for edges of H between S and T . As such, the

subgraph between S and T has degree β−/2 on the S-side and degree at most β+/2 on the

T -side. By putting a mass of 2
(1+λ)β+

on every edge of this subgraph, we can create a feasible

fractional matching of value |S|·(β−/2)·(2/((1+λ)·β+)) ≥ (1−Θ(λ))|S| in this subgraph (and

thus H). Considering the integrality gap of the matching polytope in bipartite graphs is one,

this means there is a matching of size (1−Θ(λ))|S| = (1−Θ(λ)) ·2|M̄ | = (1−Θ(λ)) ·2µ(G)/3

in H. Thus, in this case, H already has a large matching that satisfies the first condition

of Theorem 10.6.

It is worth mentioning that the tight 2/3-approximation example of [51] for EDCS can

be used here to prove that in this case, the subgraph H ∪U may not have a matching of size

larger than 2µ(G)/3, i.e., the second condition of Theorem 10.6 may indeed not hold here.

175

When degrees of edges in M̄ are “mostly unbalanced”. Let us for our informal

discussion assume that for every edge in M̄ its endpoint in L has degree β−/3 while its

endpoint in R has degree 2β−/3 (again recall that sum of these degrees should add up to β−

by Eq (10.1)). We claim that in this case, H ∪U has a large matching that satisfies condition

two of Theorem 10.6.

In this case, to satisfy property (i) of Theorem 10.6 for edges of H between S and T ,

we need that vertices in T ∩L should have degree at most β+− 2β−/3 ≤ (1 +λ)β+/3. Given

the bound of 2β−/3 on the degrees of vertices in S ∩R, we have that,

|T ∩ L| ≥ (1−Θ(λ)) · 2 · |S ∩R|.

A similar argument also proves that

|T ∩R| ≥ (1−Θ(λ)) · 1

2
· |S ∩ L|.

Now note that by Claim 10.7, |S ∩R| = |S ∩ L| = |M̄ | = µ(G)−µ(H ∪M∗U) ≥ µ(G)−µ(H ∪

U), while |T ∩ L|+ |T ∩R| = |T | ≤ |Ā|+ |B| ≤ µ(H ∪ U). Combining these with the above

two bounds, we get that,

µ(H ∪ U) ≥ (1−Θ(λ)) · 5

7
· µ(G).

Thus, in this case, H ∪ U has a matching which is a (much) better than 2/3 approximation.

It is worth mentioning that in this case, the subgraph H may not have a matching

larger than 3/2 · |M̄ | = µ(G)/2, which means the first condition of Theorem 10.6 may indeed

not hold here.

The above extreme examples suggest that when edge-degrees of M̄ are more toward

being balanced, the subgraph H has a close to 2/3-approximate matching, while when edge-

degrees are more unbalanced, the matching of H∪U is strictly better than 2/3-approximation.

This will be the general strategy underlying our proof of Theorem 10.6 in the next subsection.

The proof can then be seen more or less as a “smooth interpolation” between these two

extreme cases.

The Formal Proof

In the following lemma, we prove a lower bound on µ(H). This lemma can then be used

as follows: if degree of most edges in M̄ are “balanced”, i.e., both endpoints have degree

≈ β−/2, then µ(H) will already be of size 2 · |M̄ | which will be sufficient for the first condition

of Theorem 10.6.

176

Lemma 10.8 (matching of H is large). We have µ(H) ≥ β−
1+4λ ·

∑
(u,v)∈M̄

1
max{degF (u) , degF (v)} .

Proof. For every edge (u, v) ∈ M̄ , define F (u, v) as set of edges in F that are incident on u

or v. We define the following fractional matching x ∈ RF on edges of F :

• for any edge e ∈ F (u, v): set xe := 1
1+4λ ·

1
max{degF (u) ,degF (v)} .

Let us now prove that this is indeed a valid fractional matching. For any vertex w matched

by M̄ ,

xw :=
∑
e3w

xe ≤ degF (w) · 1

1 + 4λ
· 1

degF (w)
< 1,

thus satisfying the fractional matching constraint.

Now fix a vertex w not matched by M̄ . Let u1, . . . , udegF (w) denote the neighbors of w

in F . By definition, all these vertices are matched by M̄ . Let v1, . . . , vdegF (w) be the matched

pairs of these vertices. We need the following simple claim.

Claim 10.9. For every i ∈ [degF (w)], degF (w) ≤ (1 + 4λ) ·max {degF (ui) , degF (vi)} .

Proof. We first have the following two equations:

degF (w) + degF (ui) ≤ β+, (by the property (i) of Theorem 10.6 statement)

degF (ui) + degF (vi) = β−. (by Eq (10.1))

As such,

degF (w)− degF (vi) ≤ β+ − β− ≤ 2λβ− (as λ ≤ 1/2, and β− ≥ (1− λ)β+)

Noting that max {degF (ui) , degF (vi)} ≥ β−/2 by Eq (10.1), concludes the proof.

To finalize Lemma 10.8, for any vertex w not matched by M̄ , we have,

xw :=
∑

e=(w,ui)

xe =
∑
ui

1

1 + 4λ
· 1

max {degF (ui) , degF (vi)}
≤

Claim 10.9

∑
ui

1

degF (w)
= 1,

thus satisfying the fractional matching constraint. This implies that x is a valid fractional

matching.

Finally, the value of this fractional matching is:∑
e∈F

xe =
∑

(u,v)∈N

∑
e∈F (u,v)

xe =
∑

(u,v)∈N

degF (u) + degF (v)

(1 + 4λ) ·max {degF (u) , degF (v)}

=
β−

1 + 4λ
·
∑

(u,v)∈N

1

max {degF (u) , degF (v)}
,

177

where the last equation is by Eq (10.1). As the integrality gap of matching polytope on

bipartite graphs is one, we obtain that the desired lower bound on µ(H).

We now prove that if on the other hand most edges of M̄ are “unbalanced”, then

µ(H ∪U) should be sufficiently large. To continue, we need a quick definition. Let S denote

the endpoints of the matching M̄ and T be the neighborset of these vertices in F . Recall

that by Eq (10.1), S and T are disjoint (see Figure 10.1).

Lemma 10.10 (matching of µ(H∪U) is large). We have µ(H∪U) ≥ |M̄ |2·β−2

|M̄ |·β−·β+−
∑
s∈S(degF (s))2 .

Proof. Since F ⊆ H, by property (i) of Theorem 10.6, we have that

|F | · β+ ≥
∑

(u,v)∈F

degF (u) + degF (v) =
∑
s∈S

(degF (s))2 +
∑
t∈T

(degF (t))2. (10.2)

We can lower bound the second term of the RHS as follows. Recall that sum of

quadratics is minimized over all-equal terms. As
∑

t∈T degF (t) = |F |, this implies that,

∑
t∈T

(degF (t))2 ≥
∑
t∈T

(
|F |
|T |

)2 = |T | · (|F |
|T |

)2 =
|F |2

|T |
.

By plugging in this bound in Eq (10.2) and moving the terms around, we have that

|T | ≥ |F |2

|F | · β+ −
∑

s(degF (s))2
=

|M̄ |2 · β−2

|M̄ | · β− · β+ −
∑

s(degF (s))2
.

(as |F | = |M̄ | · β− by Eq (10.1))

Finally, T ⊆ Ā ∪ B (as there are no edges between A and B̄) and thus by Claim 10.7,

|T | ≤ µ(H ∪ U) which finalizes the proof.

Lemma 10.10 can be used as follows: when degree of most edges in M̄ are “balanced”,

the quantity
∑

s(degF (s))2 will be close to |M̄ | · (β−)2/2 which implies that µ(H ∪ U) will

be almost 2 · |M̄ |; however, when degrees of edges in M̄ are “unbalanced”, the quantity∑
s(degF (s))2 cannot decrease all the way to |M̄ | · (β−)2/2 and thus we can get a higher

lower bound on the value of µ(H ∪ U) which breaks the (2/3)-approximation.

To finalize the proof of Theorem 10.6, we need the following claim for lower bounding∑
s∈S(degF (s))2 in the RHS of Lemma 10.10, in the cases where RHS of Lemma 10.8 is small.

Claim 10.11. Suppose
∑

(u,v)∈M̄
β−

max{degF (u) , degF (v)} = (2−γ) · |M̄ | for some γ ∈ [0, 1); then∑
s(degF (s))2 ≥ |M̄ | ·

(
(2+γ2−2γ)·β−2

4+γ2−4γ

)
.

178

Proof. The intuition behind the proof is that
∑

s(degF (s))2 term is a quadratic sum and is

thus minimized in the most “balanced” case possible under the given constraints. Formally,

we define the following vector of vertex degrees d ∈ RS (recall that S is the endpoints of

matching M̄):

• For any edge (u, v) ∈ M̄ , let du := β−
2−γ and dv := β− − du.

Notice that these vertex degrees satisfy the first constraint of Eq (10.1) and that∑
(u,v)∈M̄

β−
max {du , dv}

= (2− γ) · |M̄ |,

thus satisfying the assumption of the lemma as well. We now prove that these degrees

minimize the quadratic sum, namely,∑
s∈S

(degF (s))2 ≥
∑
s∈S

d2
s. (10.3)

Suppose there is an edge (u1, v1) where degF (u1) > du1 and thus degF (v1) < dv1 (as both pairs

satisfy Eq (10.1)). This also implies that there is another edge (u2, v2) where degF (u2) < du2

and degF (v2) > dv2 so that the sum of all degrees satisfies the condition of Eq (10.1).

Now consider a sufficiently small parameter θ1 ∈ (0, 1) and the new “more balanced”

degrees

d̂u1 := degF (u1)− θ1 , d̂v1 := degF (v1) + θ1,

d̂u2 := degF (u2) + θ2 , d̂v2 := degF (v2)− θ2,

where θ2 is defined using the following equation:

1

degF (u1)
+

1

degF (u2)
=

1

degF (u1)− θ1
+

1

degF (u2) + θ2
=

1

d̂u1

+
1

d̂u2

.

Considering degF (u1) > degF (u2), we have that θ1 > θ2. Note that these new degrees

(assuming we keep the degrees of all other vertices unchanged) satisfy all the constraints as

before. We have,∑
s∈{u1,v1,u2,v2}

degF (s)2 = (d̂u1 + θ1)2 + (d̂v1 − θ1)2 + (d̂u2 − θ2)2 + (d̂v2 + θ2)2

≥ 2θ1 · (d̂u1 − d̂v1)− 2θ2 · (d̂u2 − d̂v2) + d̂2
u1

+ d̂2
v1

+ d̂2
u2

+ d̂2
v2

(by ignoring the postive θ2
1, θ

2
2 terms)

> d̂2
u1

+ d̂2
v1

+ d̂2
u2

+ d̂2
v2

(as d̂u1 − d̂v1 > d̂u2 − d̂v2 and θ1 > θ2)

179

Thus, this change reduces the value of
∑

s∈S degF (s)2 term as expected. We can now repeat-

edly continue this until we converge to the degree distribution {ds}s∈S defined earlier. This

proves Eq (10.3). By plugging in the bounds for {ds}s∈S in the RHS of Eq (10.3), we have

that,∑
s∈S

(degF (s))2 ≥
∑
s∈S

(degF (s))2 =
∑

(u,v)∈M̄

d2
u + d2

v = |M̄ | ·
(

β−
2

(2− γ)2
+ (β− −

β−
(2− γ)

)2

)

= |M̄ | ·
(

(2 + γ2 − 2γ) · β−2

4 + γ2 − 4γ

)
,

as desired.

Proof of Theorem 10.6. Let us pick γ ∈ [0, 1) such that
∑

(u,v)∈M̄
β−

max{degF (u) , degF (v)} = (2−

γ) · |M̄ | (as the max-term is at least β−/2, such a γ always exist). By plugging in the bound

of Claim 10.11 in Lemma 10.10, we have that,

µ(H ∪ U) ≥ |M̄ |2 · β−2

|M̄ | · β− · β+ − |M̄ | ·
(

(2+γ2−2γ)·β−2

4+γ2−4γ

)
≥ (1− 2λ) · |M̄ | · 1

1−
(

(2+γ2−2γ)
4+γ2−4γ

) (as β− ≥ (1− λ)β+)

= (1− 2λ) · |M̄ | · 4 + γ2 − 4γ

2− 2γ
= (1− 2λ) · |M̄ | · (2 +

γ2

2− 2γ
).

Considering |M̄ | ≥ µ(G)− µ(H ∪ U) by Claim 10.7, we obtain that

µ(H ∪ U) ≥ (1− 2λ) · µ(G) ·
(

2

3
+

γ2

18− 18γ + 3γ2

)
≥ (1− 2λ) · µ(G) ·

(
2

3
+
γ2

18

)
.

Now if for the parameter δ in Theorem 10.6, we already have γ ≥ δ, we will obtain the second

condition. Further, without loss of generality, we can assume that |M̄ | ≥ (1
3 −

δ
3) · µ(G) as

otherwise µ(H ∪ M∗U) ≥ (2
3 + δ) · µ(G) by Claim 10.7 which is stronger than the second

condition of Theorem 10.6.

Suppose γ < δ and |M̄ | ≥ (1
3 −

δ
3) · µ(G) then. In this case, by the definition of γ

and Lemma 10.8,

µ(H) ≥ 1

1 + 4λ
· (2− γ) · |M̄ | ≥ 1

1 + 4λ
· (2− δ) · (1

3
− δ

3
) · µ(G) ≥ (1− 4λ) ·

(
2

3
− δ
)
· µ(G),

thus satisfying the first condition. This concludes the proof.

10.3.2 General Graphs

We now extend the results of Theorem 10.6 to general (non-bipartite) graphs following the

probabilistic method technique of [13] for the original EDCS.

180

Corollary 10.12. Let λ ∈ (0, 1/2) and β− ≤ β+ be such that β+ ≥ 64
λ2 · log (1/λ) and

β− ≥ (1− λ)β+. Suppose G = (V,E) is any graph (not necessarily bipartite) and:

(i) H is a subgraph of G where for all (u, v) ∈ H: degH(u) + degH(v) ≤ β+; and

(ii) U is the set of all edges (u, v) in G \H such that degH(u) + degH(v) < β−.

Then, for any parameter δ ∈ (0, 1), either:

µ(H) ≥ (1− 8λ) · (2

3
− δ) · µ(G) or µ(H ∪ U) ≥ (1− 4λ) ·

(
2

3
+
δ2

18

)
· µ(G).

Proof. The proof is based on the probabilistic method and Lovász Local Lemma. Let M∗

be a maximum matching of G. Consider the following randomly chosen bipartite subgraph

G̃ = (L,R, Ẽ) of G with respect to M∗, where L ∪R = V :

• For any edge (u, v) ∈ M∗, with probability 1/2, u belongs to L and v belongs to R,

and with probability 1/2, the opposite (the choices between different edges of M∗ are

independent).

• For any vertex w ∈ V not matched by M∗, we assign w to L or R uniformly at random

(again, the choices are independent across vertices).

• The set of edges in Ẽ are all edges in E with one end point in L and the other one in

R.

Note that by the definition of G̃, every edge of M∗ belongs to G̃ as well and thus µ(G̃) = µ(G).

Define H̃ := H ∩ G̃ and Ũ := U ∩ G̃. We prove that with non-zero probability:

(i) For all (u, v) ∈ H̃: degH̃(u) + degH̃(v) ≤ (1 + λ) · β+/2;

(ii) Ũ is the set of all edges (u, v) in G̃ \ H̃ where degH̃(u) + degH̃(v) < (1− λ)β−/2;

Before proving these parts, let us mention how they imply Corollary 10.12. Consider

the subgraph G̃ of G and the sets H̃ and Ũ . Since G̃ is bipartite and H̃ and Ũ satisfy the

requirements of Theorem 10.6 for parameters β̃+ = (1 + λ) · β+/2, β̃− = (1 − λ)β−/2, and

λ̃ = λ/2, we get either

µ(H̃) ≥ (1− 8λ) · (2

3
− δ) · µ(G̃) or µ(H̃ ∪ Ũ) ≥ (1− 4λ) ·

(
2

3
+
δ2

18

)
· µ(G̃).

As H̃ ⊆ H, Ũ ⊆ U , and µ(G̃) = µ(G), we obtain the final result (notice that for this

argument, we only need existence of H̃ and Ũ and not a way of finding them; as such, the

non-zero probability guarantee completely suffices for us).

181

To prove either property, we need the following auxiliary claim.

Claim 10.13. With non-zero probability, for every vertex v ∈ V , |degH̃ (v)− degH(v)/2| <
λ
4 · β−.

Proof. Fix any vertex v ∈ V and let NH(v) :=
{
u1, . . . , udegH(v)

}
be the neighbors of v in H.

Let us assume v is assigned to L in G̃ (the other case is symmetric). Hence, degree of v in

H̃ is exactly equal to the number of vertices in NH(v) that are chosen in R. By construction

of G̃,

E
[
degH̃(v)

]
=

(degH(v) + 1)/2 if v is incident on M∗ ∩H

degH(v)/2 otherwise
.

Also, if two vertices ui, uj in NH(v) are matched by M∗, then exactly one of them will be

a neighbor to v in H̃; otherwise the choices are independent. Thus, by Chernoff bound

(Proposition 2.1),

Pr

(
|degH̃ (v)− degH(v)/2| ≥ λ

4
· β−

)
≤ 2 exp

(
−
λ2 · β2

−
8β−

)
≤ 2 exp (−4 log β+) ≤ 2

β4
+

.

(as β+ ≥ 64λ−2 log (1/λ) and β− ≥ (1− λ)β+, we have β− ≥ 32λ−2 · log β+)

For every vertex v ∈ V , define:

• event Ev: the event that |degH̃(v)− dv/2| ≥ λ
4 · β−.

The event Ev depends only on the choice of vertices in NH(v) and hence can depend on at

most β2
+ other events Eu for vertices u which are neighbors to NH(v). As such, we can apply

Lovasz Local Lemma (Proposition 2.5) to argue that with a non-zero probability, ∩v∈V Ev
happens, which concludes the proof.

In the following, we condition on the non-zero probability event of Claim 10.13.

Proof of property (i). For any edge (u, v) ∈ H̃, we have,

degH̃ (u) + degH̃ (v) ≤ 1

2
· (degH (u) + degH (v)) +

λ

2
· β− ≤ β+/2 +

λ

2
· β− ≤ (1 + λ) · β+/2,

where the second to last inequality is because (u, v) ∈ H. As such all edge (u, v) ∈ H̃ have

the desired bound on edge-degree.

182

Proof of property (ii). For any edge (u, v) ∈ G̃\H̃ with degH̃(u)+degH̃(v) < (1−λ)·β−/2,

degH (u) + degH (v) ≤ 2 ·
(
degH̃ (u) + degH̃ (v)

)
+
λ

2
· β− < (1− λ) · β− +

λ

2
· β− < β−.

This implies that this edge belongs to U and thus since Ũ := G̃∩U , it also belongs to Ũ . As

a result, any edge with “low” edge-degree belongs to U .

This concludes the proof.

10.4 An Improved Algorithm via Augmentation

In this section, we show that the maximum matching of the subgraph H constructed in the

early part of the stream of Algorithm 3 can be augmented well via the remaining edges.

Combined with our Corollary 10.12 of Section 10.3, we complete in this section the proof

of Theorem 10.2. Namely, we show that for some parameter ε0 > 0, there is a single-pass

random-order streaming algorithm (formalized as Line 16) that obtains a (2
3 +ε0)-approximate

maximum matching of G using O(n log n) space with high probability of 1− 1/poly(n).

10.4.1 The Algorithm

Our starting point is Algorithm 3. Recall that this algorithm stores two subgraphs H and

U of G of size O(n log n). Subgraph H is constructed early on, after merely observing εm

edges of the stream. In addition to H and U , here we store an additional subset of edges that

we use to augment a matching of H with. Particularly, let MH be an arbitrary maximum

matching of H. Having matching MH early on, in our algorithm we augment MH using

the edges that arrive in the rest of the stream (i.e., Phase II) in parallel to storing U . The

augmenting paths that we find may be of size up to five. This is crucial since we may not

have enough augmenting paths of length smaller than five to go beyond (2/3)-approximation.

Now by plugging our bound of Corollary 10.12, it can be shown that either H ∪ U includes

our desired approximation of strictly better that 2/3, or MH is almost a (2/3)-approximate

matching which coupled with the augmenting paths that we find for it in Phase II leads to

our better-than-(2/3)-approximation.

To find these augmenting paths, we divide the (1 − ε)m edges of Phase II into Phase

II.A and Phase II.B. To do this, we first draw a random variable τ ∼ B((1− ε)m, γ). Phase

II.A will then proceed on the edges that arrive up to the τ -th edge of Phase II and Phase

II.B proceeds on the rest of the edges. Drawing random variable τ (instead of having a fixed

threshold) is particularly useful in the analysis: Conditioned on the edges that are to arrive

183

in Phase II (but not their ordering), each edge now belongs to Phase II.A independently with

probability γ and to Phase II.B otherwise. Note that with a fixed threshold, we do not get

this independence.

Figure 10.2: An example of an execution of Line 16. Here the black zig-zagged edges are

those in matching MH which is fixed by the end of Phase I and we would like to augment

it. The black nodes are those matched by MH and the white ones are those left unmatched

by MH . The edges between white and black nodes (colored green) are the edges in T . Each

black node has at most two edges in T and the green nodes can have up to b. The red edges

are those that arrive in Phase II.B. Three augmenting paths of length one, three, and five

that are discoverable by the algorithm are also highlighted in the figure.

For Phase II.A, let us define GH to be the subgraph of G whose edges arrive in Phase

II.A and have exactly one endpoint matched by MH . Note that GH is bipartite (even though

Gmay not be) with one partition corresponding to vertices V (MH) and another to V \V (MH).

In Phase II.A, we only consider the edges of GH and greedily construct a maximal (2, b)-

matching T of GH (for some constant b ≥ 2). It is the vertices in partition V (MH) of GH

that have maximum degree 2 in T and those in the other partition can have degree up to b.

In our analysis, we show that the edges of T can be used as the two endpoint edges of many

augmenting paths of length three or five for MH (see Figure 10.2).

In Phase II.B, we first let M ← MH and upon arrival of each edge e, we iteratively

augment M via length-up-to-five augmenting paths using the edges in T ∪ {e} until no such

path is left. In our analysis, we use the edges of Phase II.B either as the middle edge of

length-five augmenting paths or as the single edge of the length-one augmenting paths the

algorithm may find (see Figure 10.2).

At the end of the stream, we return a maximum matching of M∪H∪U . The algorithm

outlined above is formalized as Algorithm 16.

184

Algorithm 16: Our random-order streaming approximate matching algorithm.

1 Parameters: γ = 2/3, b = 500, and a sufficiently small constant ε < 0.01 to be fixed
later.

(1) In Phase I of the algorithm, which consists of the first εm edges of the stream, we
construct a subgraph H of G as in Phase I of Algorithm 3. At the end of Phase I, we
fix an arbitrary maximum matching MH of H.

(2) In Phase II, which includes all the edges that arrive after Phase II, we store subgraph U
using Phase II of Algorithm 3. In addition, we store another subset of edges that we
use to augment MH . These edges are constructed in two sub-phases Phase II.A and
Phase II.B.

(3) Draw random variable τ from the Binomial distribution B((1− ε)m, γ). Note that this
can be done in O(m) time and O(1) space as we only need a counter to count the
successes.

(4) Phase II.A starts after Phase I and ends upon arrival of the τ ’th edge of Phase II.

(a) Let GH(VH , UH , EH) be a bipartite subgraph of G where VH := V (MH) is the set
of vertices matched in MH , UH := V \ V (MH) is the set of vertices left unmatched
in MH , and EH is the edges of G between VH and UH that arrive in Phase II.A.

(b) We initialize T ← ∅ and upon arrival of an edge e = (u, v) of GH with u ∈ UH and
v ∈ VH , if degT (v) < 2 and degT (u) < b we add e to T . That is, T is a maximal
(2, b)-matching of GH which requires O(nb) space to store.

(5) Phase II.B starts after Phase II.A and continues to the end of the stream:

(a) M ←MH . Upon arrival of each edge e in Phase II.B, we iteratively take an
arbitrary augmenting path P for M of length up to five using the edges in
M ∪ T ∪ {e} and let M ←M ⊕ P . We repeat this process until no more
augmenting paths of length up to five exist in M ∪ T ∪ {e}; we then continue to
the next edge of the stream in Phase II.B.

(6) Finally, we return a maximum matching of M ∪H ∪ U .

185

Space Complexity

We know already from Lemma 10.5 that |H ∪ U | = O(n log(n) · poly(1/ε)) = O(n log n) for

constant ε with high probability. In addition, subgraph T that we store in the memory has

maximum degree b = O(1) and thus requires O(n) space to store. Other than these, we only

store a matching M and augment it only using the edges stored in memory. Hence, overall,

the space complexity of the algorithm is O(n log n) with high probability.

Analysis of Approximation Ratio

Let M? be an arbitrary maximum matching of G≥εm. Fixing an arbitrary maximum matching

of G, each of its edges appears in G≥εm with probability (1− ε), thus E |M?| ≥ (1− ε)µ(G).

Now so long as µ(G) ≥ 20 log(n)ε−2 and ε < 1/2 (which we can assume to hold as discussed

in Section 10.2), we can prove a high probability lower bound on the size of M? via a Chernoff

bound on negatively associated random variables. See, e.g., [50, Lemma 2.2] for the proof of

the following:

Observation 10.14. If µ(G) ≥ 20 log(n)ε−2 and ε < 1/2, then Pr[|M?| ≥ (1− 2ε)µ(G)] ≥

1− n−5.

From now on, we condition on G<εm which fixes subgraph H and matching M?. We

only assume that G<εm is chosen such that the high probability event of Observation 10.14

holds.

Assumption 10.15. |M?| ≥ (1− 2ε)µ(G).

Other than Assumption 10.15, we do not need any other assumption on how G<εm

is chosen for the rest of the analysis of the approximation ratio.3 By conditioning on the

outcome of Phase I, the only randomization that will be left, is the order with which the

edges of G≥εm arrive in the stream. For brevity, we do not explicitly write the conditioning

on G<εm for the rest of the section, but it should be noted that all random statements

are conditioned on the outcome of Phase I.

Let P be the set of all augmenting paths of MH in S := M?∆MH with length at most

five. Note that since we regard H (and thus MH) as given, the set P is deterministic (as it

only depends on MH and M? and not on the order of edges in G≥εm).

3We note, however, that the randomization in G<εm is crucial for arguing that the algorithm uses O(n logn)

space. Here, however, we are only analyzing the approximation ratio.

186

Observation 10.16. We have |P| ≥ |M?| − 4
3 · µ(H).

Proof. Let P ′ denote the set of augmenting paths of length larger than 5 in S. Note that there

must be at least |M?|−|MH | augmenting paths for MH in S, hence |P|+ |P ′| ≥ |M?|−|MH |.

Moreover, any augmenting path in P ′ must have at least 3 edges of MH ; thus |P ′| ≤ |MH |/3.

Combination of the two bounds gives |P| ≥ |M?| − |MH | − 1
3 |MH | = |M?| − 4

3 |MH | =

|M?| − 4
3µ(H).

We use GII.A to denote the subgraph of G that arrives in Phase II.A and use GII.B to

denote the subgraph of G that arrives in Phase II.B.

Definition 10.17. We say an augmenting path P ∈ P is “lucky” under these conditions:

1. If P = 〈e1〉 then e1 ∈ GII.B.

2. If P = 〈e1, e2, e3〉 then e1, e3 ∈ GII.A.

3. If P = 〈e1, e2, e3, e4, e5〉 then e1, e5 ∈ GII.A and e3 ∈ GII.B.

We denote the set of lucky augmenting paths in P by PL.

Note that the subset PL of P is now random since it depends on the order of edges in

G≥εm. Lemma 10.18 below proves that a relatively large fraction of augmenting paths in P

will turn out to be lucky with high probability. The proof is straightforward and is given in

Section 10.4.3.

Lemma 10.18. It holds that Pr
(
|PL| ≤ γ2(1− γ)|P| −

√
15µ(G) lnn

)
≤ 2n−5.

Next, observe that in Phase II.B of Line 16 where we iteratively discover augmenting

paths, we do not have the whole subgraph GII.A and have stored only a subgraph T of GII.A

in the memory. In addition, when finding augmenting paths we use only the current edge e

of GII.B in Line 16. Therefore, not all lucky paths are actually discoverable by Line 16. This

motivates our next definition for “discoverable paths”.

Definition 10.19. An augmenting path P (not necessarily in P) for MH is discoverable if

|P | ≤ 5, all edges of P are in MH ∪ T ∪GII.B, and P has at most one edge in GII.B.

The next lemma proves there are many vertex-disjoint discoverable augmenting paths,

by relating them to the number of lucky augmenting paths |PL|. We provide the proof in

Section 10.4.2.

187

Lemma 10.20. There exists a set Q of vertex-disjoint discoverable augmenting paths for

MH with

|Q| ≥ 1

2b+ 3

(
|PL| −

4

b
· µ(H)

)
.

Observe that Q is only a set of vertex-disjoint discoverable augmenting paths. How-

ever, since Line 16 applies augmenting paths greedily and in an arbitrary order, the set of

applied augmenting paths may be very different from Q. The next claim shows that we can

nonetheless relate the number of augmenting paths that Line 16 applies to the size of Q.

Claim 10.21. Let Q be as in Lemma 10.20. Line 16 applies at least |Q|/6 augmenting paths

in Phase II.B. In other words, |M | ≥ µ(H) + 1
6 |Q|.

Proof. Take an augmenting path P ∈ Q. Since P is discoverable, there must be a moment

during Phase II.B of Line 16 where all the edges of P are stored in the memory. Note,

however, that P is by definition an augmenting path for MH whereas Line 16 tries to augment

matching M (which is the result of iteratively augmenting MH). The crucial observation,

here, is that if P is not an augmenting path for M , then at some point one of the augmenting

paths that Line 16 has applied on M must have intersected with P (through a vertex).

Now, recall that each augmenting paths that Line 16 applies has length at most five, and

thus has at most six vertices. This means that any augmenting path that Line 16 applies

can intersect (and thus “destroy”) at most six paths in Q (since recall Q is a collection of

vertex-disjoint paths). Hence Line 16 must apply at least |Q|/6 augmenting paths on M .

Since each augmenting path increases the size of M by one and initially M = MH , we have

|M | ≥ |MH |+ 1
6 |Q| = µ(H) + 1

6 |Q|.

Lemma 10.22. There is an absolute constant ε′0 > 0 such that for any ε < 0.01, if µ(H) ≤

0.68µ(G) then with probability 1− 1/ poly(n), we have |M | ≥ µ(H) + ε′0 · µ(G).

Proof. We have

|M |
Claim 10.21
≥ µ(H) +

1

6
|Q|

Lemma 10.20
≥ µ(H) +

|PL| − 4
bµ(H)

6(2b+ 3)
. (10.4)

188

On the other hand, by Lemma 10.18 we know that with 1− 1/ poly(n) probability,

|PL| > γ2(1− γ)|P| −
√

15µ(G) lnn (By Lemma 10.18)

=
4

27
|P| −

√
15µ(G) lnn (Since γ = 2/3)

≥ 4

27

(
|M?| − 4

3
µ(H)

)
−
√

15µ(G) lnn (By Observation 10.16)

≥ 4

27

(
(1− 2ε)µ(G)− 4

3
µ(H)

)
−
√

15µ(G) lnn (By Assumption 10.15)

> 0.0108µ(G)−
√

15µ(G) lnn (ε < 0.01 and µ(H) ≤ 0.68µ(G))

> 0.01µ(G). (Since µ(G) > c log n for any desirably large constant c.)

Replacing this high probability lower bound for |PL| into (10.4) we get that w.h.p.,

|M | ≥ µ(H) +
0.01µ(G)− 4

bµ(H)

6(2b+ 3)

> µ(H) + 10−7µ(G). (Replacing b = 500 and noting µ(H) ≤ 0.68µ(G).)

This completes the proof.

We are now ready to prove that Line 16, w.h.p., achieves a better-than-(2/3) approximation.

Lemma 10.23. For some absolute constant ε0 > 0 the matching returned by Line 16 with

probability 1− 1/ poly(n) has size at least (2/3 + ε0) · µ(G).

Proof. Let MO be the matching returned by Line 16 which has size at least as large as

maximum of |M | and µ(H ∪ U); we thus get |MO| ≥ max{|M |, µ(H ∪ U)}. Hence, from the

lower bound of Lemma 10.22 for |M |, we get that there is a constant ε′0 > 0 such that with

probability 1− 1/poly(n),

|MO| ≥ max
{
µ(H) + ε′0 · µ(G), µ(H ∪ U)

}
. (10.5)

In the next step, we employ Corollary 10.12 to argue that the lower bound above

implies that |MO| ≥ (2/3 + Ω(1))µ(G). In particular, let us consider subgraph G′ of G which

includes all the edges in H as well as all the edges in G>εm. In other words, the only edges of

G that do not belong to G′ are those that arrive in Phase I and are not included in subgraph

H. One can verify that H and U (constructed in Algorithm 16) satisfy the constraints of

Corollary 10.12 for graph G′ (but not necessarily G since the edges in G − G′ may have a

small edge-degree). Corollary 10.12 thus implies that for any δ ∈ (0, 1), either:

µ(H) ≥ (1− 8λ) · (2

3
− δ) · µ(G′) or µ(H ∪ U) ≥ (1− 4λ) ·

(
2

3
+
δ2

18

)
· µ(G′).

189

Recall that M? is the maximum matching of G>εm which is entirely included in G′. Also

recall from Observation 10.14 that w.h.p. |M?| ≥ (1 − 2ε)µ(G). Hence, w.h.p., µ(G′) ≥

(1− 2ε)µ(G) which combined with λ = ε/128 (Definition 10.4) simplifies the equation above

to the following:

µ(H) ≥ (1−O(ε)) · (2

3
− δ) · µ(G) or µ(H ∪ U) ≥ (1−O(ε)) ·

(
2

3
+
δ2

18

)
· µ(G). (10.6)

Plugging (10.6) into (10.5) implies for any δ ∈ (0, 1) that

|MO| ≥ (1−O(ε)) ·min

{(
2

3
− δ
)
µ(G) + ε′0µ(G),

(
2

3
+
δ2

18

)
µ(G)

}
≥ (1−O(ε)) ·min

{(
2

3
− δ + ε′0

)
,

(
2

3
+
δ2

18

)}
· µ(G).

(Note that inequality above takes minimum of the two terms whereas (10.5) takes maximum.

This is because Corollary 10.12 only guarantees either the lower bound of µ(H) or that of

µ(H ∪ U) and we do not know which one holds for our instance.)

Now letting δ = ε′0/2, we get

|MO| ≥ (1−O(ε)) ·min

{(
2

3
+
ε′0
2

)
,

(
2

3
+

(ε′0/2)2

18

)}
· µ(G)

≥ (1−O(ε))

(
2

3
+

(ε′0/2)2

18

)
µ(G).

Finally, noting that ε can be made arbitrarily small (without affecting ε′0), combined with

the fact that ε′0 is an absolute positive constant, we get that there must be some ε0 > 0 such

that |MO| ≥
(

2
3 + ε0

)
µ(G) with probability 1− 1/poly(n).

Theorem 10.2 now follows immediately from this.

10.4.2 Proof of Lemma 10.20

Observe that not all augmenting path P ∈ PL are discoverable. For example, if P ∈ PL is

of length five, despite its two endpoints e1 and e5 being part of GII.A by Definition 10.17,

it may still be the case that e1, e5 6∈ T and thus e1, e5 6∈ MH ∪ T ∪ GII.B implying that P

may not be discoverable. To prove Lemma 10.20, however, we show in this section that for

most augmenting paths P ∈ PL, we can modify P , particularly, by changing its two endpoint

edges (if any and if necessary) and turn P into a discoverable augmenting path φ(P).

Take an augmenting path P ∈ PL and recall from definition that PL ⊆ P and thus

|P | ∈ {1, 3, 5}. We define φ(P) as follows depending on the size of P :

190

• |P | = 1: In this case, we simply let φ(P)← P .

• |P | = 3: Let 〈e1, e2, e3〉 be the edges in P and note that e2 ∈ MH since P is an

augmenting path for MH . If edges e′1, e
′
3 ∈ T exist such that 〈e′1, e2, e

′
3〉 forms a length-

three augmenting path for MH , we let φ(P)← 〈e′1, e2, e
′
3〉. Otherwise, φ(P)← ∅.

• |P | = 5: Let 〈e1, e2, e3, e4, e5〉 be the edges in P . Note that e2, e4 ∈ MH since P is

an augmenting path for MH and e3 ∈ GII.B since P ∈ PL. Now if there are edges

e′1, e
′
5 ∈ T such that 〈e′1, e2, e3, e4, e

′
5〉 is an augmenting path for MH , we let φ(P) to

denote this path. Otherwise, φ(P)← ∅.

The properties enlisted in Observation 10.24 are immediate consequences of construc-

tion above:

Observation 10.24. Let P ∈ PL and suppose φ(P) 6= ∅. It holds that

1. |φ(P)| = |P |.

2. If P = 〈e1, . . . , ek〉 and φ(P) = 〈e′1, . . . , e′k〉 then ei = e′i for any 2 ≤ i ≤ k − 1.

3. The endpoint vertices of φ(P) are unmatched in MH since it is an augmenting path for

MH .

4. If |φ(P)| > 1 then the two endpoint edges of φ(P) belong to T .

5. If φ(P) 6= ∅, then φ(P) is discoverable.

We let Φ := {φ(P) | P ∈ PL, φ(P) 6= ∅}. Although each element in Φ is a discoverable

augmenting path for MH , it has to be noted that these augmenting paths may not necessarily

be vertex-disjoint. In the first part of the proof, we show that a large fraction of paths in Φ

are vertex-disjoint. In the second part, we show that Φ is itself large. The combination of

these two, gives that there is a large number of vertex-disjoint paths in Φ.

A Large Fraction of Paths in Φ are Vertex-Disjoint

We first need an auxiliary claim:

Claim 10.25. Let P ∈ PL and P ′ ∈ PL be such that P 6= P ′, φ(P) 6= ∅, and φ(P ′) 6= ∅:

1. If φ(P) and φ(P ′) intersect at a vertex v, then v is an endpoint of both φ(P) and φ(P ′).

191

2. If e ∈ φ(P) then e 6∈ φ(P ′).

Proof. Note that P and P ′ are vertex-disjoint since both belong to PL ⊆ P. By Obser-

vation 10.24 part 2, only the endpoint edges of φ(P) and φ(P ′) may differ from P and P ′

respectively. Combination of these two observations implies that any vertex v that belongs

to both of φ(P) and φ(P ′) must be an endpoint of at least one of the two paths. Now using

Observation 10.24 part 3, we get that v cannot be an intermediate vertex of one path and

an endpoint of another since an intermediate vertex must be matched in MH (as both φ(P)

and φ(P ′) are augmenting paths for MH). Hence, v must be an endpoint of φ(P) and φ(P ′).

To prove the second part, we know from the first part that if e belongs to both φ(P)

and φ(P ′), then both of the endpoints of e must be endpoints of paths φ(P) and φ(P ′). This

means that we should have |φ(P)| = |φ(P ′)| = 1 and P = P ′ contradicting P 6= P ′.

The next claim is that a large fraction of paths in Φ are vertex-disjoint.

Claim 10.26. There is a subset Q ⊆ Φ such that all the augmenting paths in Q are vertex-

disjoint and |Q| ≥ 1
2b+3 |Φ| where we recall b is the parameter of Line 16.

Proof. We greedily construct Q ⊆ Φ by iterating over the augmenting paths in Φ in an

arbitrary order and including in Q any encountered augmenting path φ ∈ Φ which does not

intersect with augmenting paths already added to Q.

Take an augmenting path φ(P) ∈ Φ. We know from Claim 10.25 part 1, that any other

path φ(P ′) ∈ Φ that intersects φ(P) must do so at an endpoint vertex of φ(P). Furthermore,

by Claim 10.25 part 2, φ(P ′) and φ(P ′′) for P ′ 6= P ′′ cannot be connected to an endpoint of

φ(P) via the same edge. Hence, any φ(P ′) intersecting φ(P) must do so via a unique edge

to an endpoint of P . Since the two endpoint edges of any path φ(P ′) of size larger than one

belong to T by Observation 10.24 part 4, and that the maximum degree of T is b, there are

at most 2b such paths intersecting φ(P). Moreover, at most one path φ(P ′) of length one can

intersect each endpoint of φ(P) since φ(P ′) = P ′ for length-one paths and thus all of them

are vertex-disjoint. Therefore, overall, φ(P) intersects at most 2b+ 2 other paths φ(P ′).

Now every time that we add a path φ(P) to Q, let us remove the remaining paths in

Φ that intersect φ(P). By our discussion above, every time we add a path to Q, we remove

at most 2b+ 2 other paths from Φ. Hence |Q| ≥ 1
2b+3 |Φ|.

192

The Set Φ is Large

The main statement that Φ is large is formally given as Claim 10.29. Before proving it, we

need two auxiliary Claims 10.27 and 10.28.

Claim 10.27. Let P = 〈e1, . . . , ek〉 be an augmenting path of length three or five in PL. Let

us denote the endpoints of e1 and ek respectively by (u1, v1) and (vk, uk) where v1 is the vertex

connected to e2 and vk is the vertex connected to ek−1. If it holds that

(e1 ∈ T or degT (v1) ≥ 2) and (ek ∈ T or degT (vk) ≥ 2), (10.7)

then φ(P) 6= ∅.

Proof. It suffices from our construction of φ(P) to show there are edges e′1, e
′
k ∈ T such that

〈e′1, e2, . . . , ek−1, e
′
k〉 is an augmenting path for MH . We let e′1 ← e1 if e1 ∈ T and similarly

let e′k ← ek if ek ∈ T . If e1 6∈ T but still (10.7) holds, then degT (v1) ≥ 2. Moreover, by

construction of T in Line 16, these two edges of v1 are in UH , i.e., the vertices left unmatched

by MH . Note that none of these two edges of v1 are connected to the intermediate vertices

of P since P is an augmenting-path for MH and hence all of its intermediate vertices are

matched by MH (and so do not belong to UH). However, it could be that one of these edges

is connected to the other endpoint of the augmenting path if the graph is non-bipartite. But

this can happen for at most one of the edges of v1 since there are no parallel edges in the

graph, which leaves the other edge as a valid option for e′1. In a similar way, if ek 6∈ T ,

we get degT (vk) ≥ 2 under (10.7) and can pick one of these two edges of vk to be e′k such

that 〈e′1, e2, . . . , ek−1, e
′
k〉 forms an augmenting path for MH . This completes the proof of the

claim that condition (10.7) suffices to get φ(P) 6= ∅.

Claim 10.28. Let P ∈ PL, e1 = (u1, v1), and ek = (vk, uk) be as in Claim 10.27. Suppose

that condition (10.7) does not hold for P . Then degT (u1) ≥ b or degT (uk) ≥ b.

Proof. We first argue that both e1 and ek are part of graph GH of Phase II.A of Line 16.

Toward this, note that since P ∈ PL, we get from Definition 10.17 that e1, ek ∈ GII.A.

Moreover, since P is by definition an augmenting path for MH , its endpoints u1, uk must be

unmatched in MH (implying u1, uk ∈ UH) and vertices v1, vk which are intermediate vertices

of P must be matched in MH (implying v1, vk ∈ VH). Hence, both e1 and ek must belong to

GH (refer to Line 16).

Now let us suppose that (10.7) is false since its first clause is false. That is, (e1 6∈

T and degT (v1) < 2). In this case, knowing that e1 ∈ GH , the fact that Line 16 does not add

193

e1 to T upon processing e1 implies that either degT (v1) ≥ 2 or degT (u1) ≥ b (see description

of Algorithm 16). The former cannot hold or otherwise the first clause of (10.7) would not

be false. Hence it should be the case that degT (u1) ≥ b. The same argument implies that if

(10.7) is false for its second clause, then degT (uk) ≥ b. The proof is thus complete.

Claim 10.29. |Φ| ≥ |PL| − 4
b · µ(H).

Proof. Let X := {P ∈ PL | φ(P) = ∅}. By definition, Φ = PL \ X , thus

|Φ| = |PL| − |X |. (10.8)

It, therefore, suffices to upper bound the size of X . We do so by double counting the number

of edges in T .

Recall that for any P ∈ PL, |P | ∈ {1, 3, 5} by definition of PL. Moreover, if |P | = 1,

then by construction φ(P) = P 6= ∅ and thus P 6∈ X . Hence for any P ∈ X it holds that

|P | ∈ {3, 5}. Now, by Claim 10.27, condition (10.7) should not hold for any P ∈ X . This

further implies from Claim 10.28 that at least one of the endpoints of each P ∈ X must

have degree at least b edges in T . Since X ⊆ PL and all augmenting paths in PL are vertex

disjoint, this means that the endpoints of paths in X collectively have at least |X |b edges in

T . Moreover, all of these vertices must be on the UH = V \ V (MH) partition of graph GH

since each P ∈ X ⊆ PL is an augmenting path for MH by definition of PL. Now we give an

alternative way of counting the edges in T . Note that any vertex in partition VH = V (MH)

of GH , has at most 2 edges in T by construction of T in Algorithm 16. Hence, the number

of edges in T can be upper bounded by 2 · |V (MH)| = 2 · 2|MH | = 4|MH |. As such, we get

|X |b ≤ 4|MH | and thus |X | ≤ 4|MH |/b. Plugging this upper bound for |X | into (10.8) and

noting that |MH | = µ(H) completes the proof.

We are finally ready to formally prove Lemma 10.20:

Proof of Lemma 10.20. Let Q ⊆ Φ be as in Claim 10.26. All the paths in Q are vertex-

disjoint. Also:

|Q|
Claim 10.26
≥ |Φ|

2b+ 3

Claim 10.29
≥ 1

2b+ 3

(
|PL| −

4

b
µ(H)

)
.

The proof of Lemma 10.20 is thus complete.

194

10.4.3 Proof of Lemma 10.18

We first lower bound E |PL| and then prove Lemma 10.18 via a concentration bound.

Claim 10.30. E |PL| ≥ γ2(1− γ)|P|.

Proof. Recall again that we regard P as fixed as we have conditioned on the outcome of

Phase I. Now whether or not an augmenting path P ∈ P turns out to be lucky depends on

the arrival ordering of the edges in G≥εm. We first show that for any P ∈ P,

Pr[P ∈ PL] ≥ γ2(1− γ). (10.9)

(Where, recall, we hide the condition on Phase I for brevity in our probabilistic statements.)

The key insight is to note that once we condition on G<εm, an edge e that is to arrive

in Phase II belongs to GII.A independently (than other edges of Phase II) with probability γ

and belongs to GII.B otherwise (i.e., with probability (1 − γ)). As already discussed at the

start of Section 10.4, this follows from the fact that we do not fix the size of Phase II.A in

Algorithm 16 but rather choose it from distribution B((1−ε)m, γ). Having this independence,

we can prove (10.9) as follows:

Proof of Inequality (10.9). Take an augmenting path P ∈ P. Since P includes augmenting

paths of length up to five, |P | ∈ {1, 3, 5}. We prove (10.9) for all three cases one by one.

First, consider the case where P is of length five and let P = 〈e1, e2, e3, e4, e5〉. By

Definition 10.17, P is lucky if e1, e5 ∈ GII.A and e3 ∈ GII.B. The former two events happen

with probability γ each and the latter happens with probability (1 − γ). Since the three

events, as discussed, are independent, we have

Pr[P ∈ PL] = γ2(1− γ) ∀P = 〈e1, e2, e3, e4, e5〉 ∈ P.

For length-three paths, only the two endpoints should appear in Phase II.A, hence

Pr[P ∈ PL] = γ2 ≥ γ2(1− γ) ∀P = 〈e1, e2, e3〉 ∈ P.

For length-one paths, the single edge of the path should appear in Phase II.B, hence:

Pr[P ∈ PL] = (1− γ) ≥ γ2(1− γ) ∀P = 〈e1〉 ∈ P.

The combination of these cases completes the proof of inequality (10.9).

195

Proof of Lemma 10.18 via inequality (10.9). By linearity of expectation, we have

E |PL| =
∑
P∈P

Pr[P ∈ PL]
(10.9)

≥
∑
P∈P

γ2(1− γ) = γ2(1− γ)|P|.

We are now ready to prove Lemma 10.18 via a simple Chernoff bound.

Proof of Lemma 10.18. Whether or not an augmenting path P ∈ P turns out to be lucky

depends on how its odd edges belong to GII.A and GII.B. Since all the augmenting paths in

P are by definition vertex-disjoint, and since as discussed edges of G≥εm belong to GII.A and

GII.B independently from each other, we get that the paths in P belong to PL independently

from each other. By a simple Chernoff bound (Proposition 2.1), letting δ =
√

15 lnn
E |PL| > 0, we

have

Pr
(
|PL| ≤ (1− δ) E |PL| = E |PL| −

√
15 E |PL| lnn

)
≤ 2 exp

(
−δ

2 ·E |PL|
3

)
≤ 2 exp(−5 lnn) = 2n−5.

Since E |PL| ≥ γ2(1− γ)|P| by Claim 10.30 and E |PL| ≤ |P| ≤ µ(G) this implies that

Pr
(
|PL| ≤ γ2(1− γ)|P| −

√
15µ(G) lnn

)
≤ 2n−5.

196

Part V

Conclusion and Open Problems

Chapter 11

Conclusion and Open Problems

In this thesis, we revisited a number of fundamental problems for massive graphs, where

traditional algorithms are no longer applicable. One of the main challenges with such graphs

is that they are often, by orders of magnitude, larger than a single machine’s memory. This

invalidates several assumptions of traditional algorithms such as the assumption to have

random-access to various parts of the graph. In this thesis, we considered various forms of

large-scale algorithms that allow efficient processing of such massive graphs. Specifically, we

focused on (i) massively parallel computation algorithms where the workload is distributed

to several machines each with sublinear space/communication, (ii) sublinear-time algorithms

that process the input while reading a small fraction of it, (iii) streaming algorithms that

take only few passes over the input having access to a sublinear space, and (iv) dynamic

algorithms that address changes to the input in sublinear time. We presented new algorithms

for fundamental graph problems including maximum matching, maximal independent set,

minimum vertex cover, and graph connectivity in these models that substantially improve

upon the state-of-the-art.

We conclude this thesis with a number of important open problems that relate to the

models and problems that we considered.

11.1 Open Problems for Massively Parallel Computation

11.1.1 Connectivity Problems

Proving or refuting the 1v2-Cycle conjecture (Conjecture 5.1) is arguably the most funda-

mental open question in the study of MPC algorithms. This conjecture has been the basis

of several conditional lower bounds in the model, even for problems that are seemingly un-

related to graph connectivity. Hence, proving or disproving it will have deep consequences.

198

Concretely, the open problem is the following:

Open Problem 1. Suppose that the input is promised to be either a cycle on n vertices or

two cycles on n/2 vertices each. Does there exist a o(log n) round algorithm for distinguishing

the two cases using n1−Ω(1) space per machine and poly(n) total space?

Recall that the 1v2-Cycle conjecture states that the answer to Open Problem 1 is

negative: that there is no such algorithm. A challenge in proving this conjecture is that

any ω(1) round unconditional lower bound in the MPC model with nΩ(1) local space for a

polynomial-time solvable problem would separate NC1 from P [144], which is a notoriously

difficult problem in circuit complexity.

11.1.2 Matching

We showed in Chapter 4 that a maximal matching can be found in O(log log ∆)-rounds of

MPC using O(n) space per machine and an optimal total space of O(m). This leaves two

main open problems. First, can we improve the round-complexity further? Namely,

Open Problem 2. Does there exist an O(1) round MPC algorithm for finding a maximal

matching, or in fact any O(1)-approximation of maximum matching, using O(n) local space

and poly(n) total space?

We note that the O(log log ∆)-round algorithm remains the fastest known for any O(1)-

approximate matching and any o(log log n) round algorithm would also be very interesting.

The next question is can we reduce the local space to strictly sublinear in n without

blowing up the round-complexity? Namely,

Open Problem 3. Does there exist a poly(log log n) round MPC algorithm for finding a

maximal matching, or in fact any O(1)-approximation of maximum matching, using n1−Ω(1)

local space and poly(n) total space?

We discussed in Chapter 4 that the local space of our algorithm can be made mildly

sublinear in n, namely n/2Ω(
√

logn) though note that it is still much larger than n1−Ω(1). We

also showed that an algorithm settles Open Problem 3 so long as log λ = poly(log log n) where

recall λ is the arboricity of the graph. The fastest current algorithm for finding a maximal

matching with strictly sublinear in n local space for general graphs is that of Ghaffari and

Uitto [92] which takes Õ(
√

log ∆) rounds. See also [95] for some evidence that Ω(log log n)

rounds might be needed for any O(1)-approximate matching with strictly sublinear space.

199

We note that both Open Problem 2 and Open Problem 3 are also open for the maximal

independent set problem.

11.2 Open Problems for Dynamic Algorithms

We considered the maximal independent set, maximal matching, and approximate maximum

matching problems in Part III of the thesis where we discussed dynamic graph algorithms.

Here we mention some intriguing open questions related to these problems.

We showed in Chapter 9 that a (1
2 + Ωε(1))-approximate matching can be maintained

in an arbitrary small polynomial update-time of O(∆ε) + poly(log n) where ε > 0 can be any

parameter. It is a long-standing open problem to reduce the update-time to poly(logn) while

maintaining a strictly-better-than-half approximation:

Open Problem 4. Does there exist a fully dynamic algorithm maintaining a (1
2 + ε0)-

approximate matching for some constant ε0 > 0 with poly(log n) update-time?

We note this problem is open even if we allow an update-time of up to no(1), allow

randomization against an oblivious adversary, and assume that the graph is bipartite!

Next, we highlight an intriguing open problem regarding deterministic fully dynamic

algorithms. Particularly we saw algorithms in Chapters 7 and 8 that maintain a maximal

independent set and a maximal matching in poly(log n) update-time. However, these algo-

rithms use randomization in a crucial way. One downside, of course, is that there is a tiny

chance of failure hence motivating the search for deterministic algorithms. There is another

drawback also: both of these mentioned algorithms require the oblivious adversary assump-

tion crucially. That is, the adversary should fix the sequence of updates before the algorithm

starts to operate. In some applications of dynamic algorithms the output of the algorithm

may affect the future updates, hence invalidating the oblivious adversary assumption. Un-

fortunately, for both maximal matching and maximal independent set there is a huge gap

between the best known algorithms that work against oblivious adversaries and those that

work against an adaptive adversaries.

Open Problem 5. Does there exist fully dynamic algorithms for maintaining a maximal

independent set or a maximal matching in poly(log n) time deterministically?

Currently all known algorithms for maintaining an MIS or a MM against adaptive

adversaries take a large polynomial update-time.

200

11.3 Open Problems for Streaming Algorithms

We showed in Chapter 10 that there is a single-pass streaming algorithm that uses O(n log n)

space and returns a (2
3 +Ω(1))-approximate maximum matching of the graph at the end of the

stream, provided that the edges of the graph arrive in a random order. The important message

of this result is that the 2
3 -approximation, which was a barrier for all previous techniques, is

not the right answer for this problem. An immediate next question is the following:

Open Problem 6. What is the best approximation achievable for the one-pass random-

order streaming matching problem using n poly(log n) space? Does there exist a (1 − ε)-

approximation for any fixed ε > 0?

In a result that we did not cover in this thesis, we showed in [12] that there is no

(1 − ε)-approximate matching algorithm in the random-order streaming model that uses

(exp(1/ε)0.99n poly(log n)) space. In other words, an exponential dependence on 1/ε is nec-

essary. But this does not rule out an Õ(n) space algorithm for fixed ε > 0 yet.

Another intriguing and long-standing open question is for adversarial arrivals where

the greedy half approximation achieved via a maximal matching remains the best known

algorithm.

Open Problem 7. Does there exist a (1
2 + Ω(1))-approximate one-pass streaming algorithm

using n poly(log n) space under adversarial-order edge arrivals?

This problem is open even if one allows all the way up to n2−Ω(1) space!

201

Bibliography

[1] Kook Jin Ahn and Sudipto Guha. Access to Data and Number of Iterations: Dual

Primal Algorithms for Maximum Matching under Resource Constraints. ACM Trans.

Parallel Comput., 4(4):17:1–17:40, 2018.

[2] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via

linear measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages

459–467. SIAM, 2012.

[3] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent informa-

tion: Ranking and clustering. J. ACM, 55(5):23:1–23:27, 2008.

[4] Noga Alon and Joel H. Spencer. The Probabilistic Method, Third Edition. Wiley-

Interscience series in discrete mathematics and optimization. Wiley, 2008. ISBN 978-

0-470-17020-5.

[5] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-Efficient Local Compu-

tation Algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132–

1139.

[6] Noga Alon, László Babai, and Alon Itai. A Fast and Simple Randomized Parallel

Algorithm for the Maximal Independent Set Problem. J. Algorithms, 7(4):567–583,

1986.

[7] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local compu-

tation algorithms. In Rabani [141], pages 1132–1139. ISBN 978-1-61197-210-8.

202

[8] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Par-

allel algorithms for geometric graph problems. In Symposium on Theory of Computing,

STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 574–583. ACM,

2014.

[9] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel

Graph Connectivity in Log Diameter Rounds. In 59th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages

674–685. IEEE Computer Society, 2018.

[10] Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic Match-

ing: Reducing Integral Algorithms to Approximately-Maximal Fractional Algorithms.

In 45th International Colloquium on Automata, Languages, and Programming, ICALP

2018, July 9-13, 2018, Prague, Czech Republic, pages 7:1–7:16, 2018.

[11] Sepehr Assadi. Simple Round Compression for Parallel Vertex Cover. CoRR,

abs/1709.04599, 2017.

[12] Sepehr Assadi and Soheil Behnezhad. Beating Two-Thirds For Random-Order Stream-

ing Matching. In 48th International Colloquium on Automata, Languages, and Pro-

gramming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),

volume 198 of LIPIcs, pages 19:1–19:13. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2021.

[13] Sepehr Assadi and Aaron Bernstein. Towards a Unified Theory of Sparsification for

Matching Problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA

2019, January 8-9, 2019 - San Diego, CA, USA, pages 11:1–11:20, 2019.

[14] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic

Maximal Independent Set with Sublinear Update Time. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,

CA, USA, June 25-29, 2018, pages 815–826, 2018.

[15] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and

Cliff Stein. Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive

Graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1616–

1635, 2019.

203

[16] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear Algorithms for (∆+1) Vertex

Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 767–

786. SIAM, 2019.

[17] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic

Maximal Independent Set with Sublinear in n Update Time. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San

Diego, California, USA, January 6-9, 2019, pages 1919–1936, 2019.

[18] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively Parallel Algorithms for

Finding Well-Connected Components in Sparse Graphs. In Proceedings of the 2019

ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,

Canada, July 29 - August 2, 2019, pages 461–470. ACM, 2019.

[19] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg, José Marcelo Farfel,

Renata EL Ferretti, Renata EP Leite, Wilson Jacob Filho, Roberto Lent, and Suzana

Herculano-Houzel. Equal numbers of neuronal and nonneuronal cells make the human

brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513

(5):532–541, 2009.

[20] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality

of Distributed Symmetry Breaking. In 53rd Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012,

pages 321–330. IEEE Computer Society, 2012.

[21] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully Dynamic Maximal Match-

ing in O(log n) Update Time. In IEEE 52nd Annual Symposium on Foundations of

Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages

383–392, 2011.

[22] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully Dynamic Maximal Matching

in O(log n) Update Time (Corrected Version). SIAM J. Comput., 47(3):617–650, 2018.

[23] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity Clus-

tering: Hierarchical Clustering at Scale. In Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems 2017, De-

cember 4-9, 2017, Long Beach, CA, USA, pages 6864–6874, 2017.

204

[24] MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi

Hajiaghayi, and Vahab S. Mirrokni. Brief Announcement: MapReduce Algorithms

for Massive Trees. In 45th International Colloquium on Automata, Languages, and

Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of

LIPIcs, pages 162:1–162:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[25] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication Steps for Parallel

Query Processing. J. ACM, 64(6):40:1–40:58, 2017.

[26] Soheil Behnezhad. Time-Optimal Sublinear Algorithms for Matching and Vertex Cover.

In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,

to appear, 2021.

[27] Soheil Behnezhad and Mahsa Derakhshan. Stochastic Weighted Matching: (1 − ε)

Approximation. In 61st IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1392–1403. IEEE, 2020.

[28] Soheil Behnezhad and Nima Reyhani. Almost Optimal Stochastic Weighted Matching

with Few Queries. In Proceedings of the 2018 ACM Conference on Economics and

Computation, Ithaca, NY, USA, June 18-22, 2018, pages 235–249. ACM, 2018.

[29] Soheil Behnezhad, Sina Dehghani, Mahsa Derakhshan, MohammadTaghi Hajiaghayi,

and Saeed Seddighin. Faster and Simpler Algorithm for Optimal Strategies of Blotto

Game. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

February 4-9, 2017, San Francisco, California, USA, pages 369–375. AAAI Press, 2017.

[30] Soheil Behnezhad, Mahsa Derakhshan, Hossein Esfandiari, Elif Tan, and Hadi Yami.

Brief Announcement: Graph Matching in Massive Datasets. In Proceedings of the

29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017,

Washington DC, USA, July 24-26, 2017, pages 133–136. ACM, 2017.

[31] Soheil Behnezhad, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi, and Aleksan-

drs Slivkins. A Polynomial Time Algorithm for Spatio-Temporal Security Games. In

Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17,

Cambridge, MA, USA, June 26-30, 2017, pages 697–714. ACM, 2017.

[32] Soheil Behnezhad, Avrim Blum, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi,

Mohammad Mahdian, Christos H. Papadimitriou, Ronald L. Rivest, Saeed Seddighin,

and Philip B. Stark. From Battlefields to Elections: Winning Strategies of Blotto and

205

Auditing Games. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,

pages 2291–2310. SIAM, 2018.

[33] Soheil Behnezhad, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi, and Saeed Sed-

dighin. Spatio-Temporal Games Beyond One Dimension. In Proceedings of the 2018

ACM Conference on Economics and Computation, Ithaca, NY, USA, June 18-22, 2018,

pages 411–428. ACM, 2018.

[34] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief An-

nouncement: Semi-MapReduce Meets Congested Clique. CoRR, abs/1802.10297, 2018.

[35] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, and Richard M.

Karp. Massively Parallel Symmetry Breaking on Sparse Graphs: MIS and Maximal

Matching. CoRR, abs/1807.06701, 2018.

[36] Soheil Behnezhad, Avrim Blum, Mahsa Derakhshan, Mohammad Taghi Hajiaghayi,

Christos H. Papadimitriou, and Saeed Seddighin. Optimal Strategies of Blotto Games:

Beyond Convexity. In Proceedings of the 2019 ACM Conference on Economics and

Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages 597–616. ACM,

2019.

[37] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Moham-

madTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively Parallel Compu-

tation of Matching and MIS in Sparse Graphs. In Proceedings of the 2019 ACM Sym-

posium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,

July 29 - August 2, 2019, pages 481–490. ACM, 2019.

[38] Soheil Behnezhad, Mahsa Derakhshan, Alireza Farhadi, MohammadTaghi Hajiaghayi,

and Nima Reyhani. Stochastic Matching on Uniformly Sparse Graphs. In Algorithmic

Game Theory - 12th International Symposium, SAGT 2019, Athens, Greece, September

30 - October 3, 2019, Proceedings, volume 11801 of Lecture Notes in Computer Science,

pages 357–373. Springer, 2019.

[39] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel,

and Hamed Saleh. Streaming and Massively Parallel Algorithms for Edge Coloring. In

27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,

Munich/Garching, Germany, volume 144 of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2019.

206

[40] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and

Madhu Sudan. Fully Dynamic Maximal Independent Set with Polylogarithmic Up-

date Time. In 60th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 382–405. IEEE

Computer Society, 2019.

[41] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab S.

Mirrokni. Near-Optimal Massively Parallel Graph Connectivity. In 60th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,

USA, November 9-12, 2019, pages 1615–1636. IEEE Computer Society, 2019.

[42] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S. Mir-

rokni, and Warren Schudy. Massively Parallel Computation via Remote Memory Ac-

cess. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures,

SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages 59–68. ACM, 2019.

[43] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S. Mir-

rokni, and Warren Schudy. Massively Parallel Computation via Remote Memory Ac-

cess. In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures,

SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages 59–68. ACM, 2019.

[44] Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.

Stochastic Matching with Few Queries: New Algorithms and Tools. In Proceedings

of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,

San Diego, California, USA, January 6-9, 2019, pages 2855–2874. SIAM, 2019.

[45] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially

Faster Massively Parallel Maximal Matching. In 60th IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November

9-12, 2019, pages 1637–1649. IEEE Computer Society, 2019.

[46] Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic

Matching with Few Queries: (1−ε) Approximation. In Proccedings of the 52nd Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,

June 22-26, 2020, pages 1111–1124. ACM, 2020.

[47] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab S. Mir-

rokni, and Warren Schudy. Parallel Graph Algorithms in Constant Adaptive Rounds:

Theory meets Practice. Proc. VLDB Endow., 13(13):3588–3602, 2020.

207

[48] Soheil Behnezhad, Jakub Lacki, and Vahab S. Mirrokni. Fully Dynamic Matching:

Beating 2-Approximation in ∆ε Update Time. In Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January

5-8, 2020, pages 2492–2508. SIAM, 2020.

[49] Claude Berge. The theory of graphs. Courier Corporation, 1962.

[50] Aaron Bernstein. Improved Bounds for Matching in Random-Order Streams. In 47th

International Colloquium on Automata, Languages, and Programming, ICALP 2020,

July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), pages 12:1–12:13, 2020.

[51] Aaron Bernstein and Cliff Stein. Fully Dynamic Matching in Bipartite Graphs. In Au-

tomata, Languages, and Programming - 42nd International Colloquium, ICALP 2015,

Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 167–179, 2015.

[52] Aaron Bernstein and Cliff Stein. Faster Fully Dynamic Matchings with Small Approx-

imation Ratios. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages

692–711, 2016.

[53] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A Deamortization Ap-

proach for Dynamic Spanner and Dynamic Maximal Matching. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San

Diego, California, USA, January 6-9, 2019, pages 1899–1918, 2019.

[54] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New Deterministic

Approximation Algorithms for Fully Dynamic Matching. CoRR, abs/1604.05765, 2016.

[55] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New determinis-

tic approximation algorithms for fully dynamic matching. In Proceedings of the 48th

Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,

MA, USA, June 18-21, 2016, pages 398–411, 2016.

[56] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic

Fully Dynamic Approximate Vertex Cover and Fractional Matching in O(1) Amortized

Update Time. In Integer Programming and Combinatorial Optimization - 19th Interna-

tional Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings,

pages 86–98, 2017.

208

[57] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully Dynamic

Approximate Maximum Matching and Minimum Vertex Cover O(log3 n) Worst Case

Update Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,

pages 470–489, 2017.

[58] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic Fully

Dynamic Data Structures for Vertex Cover and Matching. SIAM J. Comput., 47(3):

859–887, 2018.

[59] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy Sequential Maximal

Independent Set and Matching are Parallel on Average. In 24th ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA, June

25-27, 2012, pages 308–317, 2012.

[60] Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. Greedy sequential maximal

independent set and matching are parallel on average. In 24th ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA ’12, Pittsburgh, PA, USA, June

25-27, 2012, pages 308–317, 2012.

[61] Béla Bollobás and Oliver Riordan. The Diameter of a Scale-Free Random Graph.

Combinatorica, 24(1):5–34, 2004.

[62] Béla Bollobás and Oliver M Riordan. Mathematical results on scale-free random graphs.

Handbook of graphs and networks: from the genome to the internet, pages 1–34, 2003.

[63] Karl Bringmann, Fabian Kuhn, Konstantinos Panagiotou, Ueli Peter, and Henning

Thomas. Internal DLA: Efficient Simulation of a Physical Growth Model - (Extended

Abstract). In Automata, Languages, and Programming - 41st International Colloquium,

ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 247–

258, 2014.

[64] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. Optimal Dynamic Dis-

tributed MIS. In Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 217–226, 2016.

[65] Moses Charikar and Shay Solomon. Fully Dynamic Almost-Maximal Matching: Break-

ing the Polynomial Worst-Case Time Barrier. In 45th International Colloquium on Au-

209

tomata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech

Republic, pages 33:1–33:14, 2018.

[66] Moses Charikar, Weiyun Ma, and Li-Yang Tan. Unconditional Lower Bounds for Adap-

tive Massively Parallel Computation. In SPAA ’20: 32nd ACM Symposium on Paral-

lelism in Algorithms and Architectures, Virtual Event, USA, July 15-17, 2020, pages

141–151. ACM, 2020.

[67] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the Minimum

Spanning Tree Weight in Sublinear Time. SIAM J. Comput., 34(6):1370–1379, 2005.

[68] Shiri Chechik and Tianyi Zhang. Fully Dynamic Maximal Independent Set in Expected

Poly-Log Update Time. In 49th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2019, to appear, 2019.

[69] Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear Algorithms and Lower

Bounds for Metric TSP Cost Estimation. In 47th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,

Germany (Virtual Conference), pages 30:1–30:19, 2020.

[70] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi

Muthukrishnan. One Trillion Edges: Graph Processing at Facebook-Scale. Proc. VLDB

Endow., 8(12):1804–1815, 2015.

[71] Fan Chung. Graph theory in the information age. Notices of the AMS, 57(6):726–732,

2010.

[72] Sam Coy and Artur Czumaj. Deterministic Massively Parallel Connectivity. CoRR,

abs/2108.04102, 2021.

[73] Pilu Crescenzi, Roberto Grossi, Michel Habib, Leonardo Lanzi, and Andrea Marino.

On computing the diameter of real-world undirected graphs. Theor. Comput. Sci., 514:

84–95, 2013.

[74] Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic Graphs in the

Sliding-Window Model. In Algorithms - ESA 2013 - 21st Annual European Symposium,

Sophia Antipolis, France, September 2-4, 2013. Proceedings, volume 8125 of Lecture

Notes in Computer Science, pages 337–348. Springer, 2013. ISBN 978-3-642-40449-8.

210

[75] Artur Czumaj and Christian Sohler. Estimating the Weight of Metric Minimum Span-

ning Trees in Sublinear Time. SIAM J. Comput., 39(3):904–922, 2009.

[76] Artur Czumaj and Christian Sohler. Sublinear-time Algorithms. In Property Testing

- Current Research and Surveys, volume 6390 of Lecture Notes in Computer Science,

pages 41–64. Springer, 2010.

[77] Artur Czumaj and Christian Sohler. Sublinear Time Approximation of the Cost of a

Metric k-Nearest Neighbor Graph. In Proceedings of the 2020 ACM-SIAM Symposium

on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,

pages 2973–2992. SIAM, 2020.

[78] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak,

and Piotr Sankowski. Round Compression for Parallel Matching Algorithms. In Pro-

ceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2018, Los Angeles, CA, USA, June 25-29, 2018, pages 471–484. ACM, 2018.

[79] Sebastian Daum, Seth Gilbert, Fabian Kuhn, and Calvin C. Newport. Leader election

in shared spectrum radio networks. In ACM Symposium on Principles of Distributed

Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18, 2012, pages 215–224,

2012.

[80] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, 2008.

[81] Yuhao Du and Hengjie Zhang. Improved Algorithms for Fully Dynamic Maximal In-

dependent Set. CoRR, abs/1804.08908, 2018.

[82] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–

467, 1965.

[83] Hossein Esfandiari and Michael Mitzenmacher. Metric Sublinear Algorithms via Linear

Sampling. In 59th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2018, Paris, France, October 7-9, 2018, pages 11–22. IEEE Computer Society,

2018.

[84] Martin Farach-Colton and Meng-Tsung Tsai. Exact Sublinear Binomial Sampling.

Algorithmica, 73(4):637–651, 2015.

211

[85] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A.

Rossi. Approximate Maximum Matching in Random Streams. In Proceedings of the

2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City,

UT, USA, January 5-8, 2020, pages 1773–1785, 2020.

[86] Illés J Farkas, Imre Derényi, Albert-László Barabási, and Tamas Vicsek. Spectra of

“real-world” graphs: Beyond the semicircle law. Physical Review E, 64(2):026704, 2001.

[87] Uriel Feige. On Sums of Independent Random Variables with Unbounded Variance and

Estimating the Average Degree in a Graph. SIAM J. Comput., 35(4):964–984, 2006.

[88] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian

Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):

207–216, 2005.

[89] Manuela Fischer and Andreas Noever. Tight Analysis of Parallel Randomized Greedy

MIS. ACM Trans. Algorithms, 16(1):6:1–6:13, 2020.

[90] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted

Matchings via Unweighted Augmentations. In Proceedings of the 2019 ACM Symposium

on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29

- August 2, 2019, pages 491–500, 2019.

[91] Mohsen Ghaffari. Distributed MIS via All-to-All Communication. In Proceedings of the

ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington,

DC, USA, July 25-27, 2017, pages 141–149, 2017.

[92] Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifi-

cations in Massively Parallel Computation and Centralized Local Computation. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1636–1653. SIAM,

2019.

[93] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt

Rubinfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching,

and Vertex Cover. In Proceedings of the 2018 ACM Symposium on Principles of Dis-

tributed (PODC), pages 129–138, 2018.

[94] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt

Rubinfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching,

212

and Vertex Cover. In Proceedings of the 2018 ACM Symposium on Principles of Dis-

tributed Computing, PODC 2018, July 23-27, 2018, pages 129–138, 2018.

[95] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional Hardness Results for

Massively Parallel Computation from Distributed Lower Bounds. In 60th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,

USA, November 9-12, 2019, pages 1650–1663. IEEE Computer Society, 2019.

[96] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the Communication and

Streaming Complexity of Maximum Bipartite Matching. In Proceedings of the Twenty-

third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–

485. SIAM, 2012.

[97] Oded Goldreich and Dana Ron. Approximating Average Parameters of Graphs. Ran-

dom Struct. Algorithms, 32(4):473–493, 2008.

[98] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, Searching, and

Simulation in the MapReduce Framework. In Proceedings of the 22nd International

Symposium on Algorithms and Computation (ISAAC), pages 374–383, 2011.

[99] Lei Gu, Hui Lin Huang, and Xiao Dong Zhang. The clustering coefficient and the

diameter of small-world networks. Acta Mathematica Sinica, English Series, 29(1):

199–208, 2013.

[100] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi.

Online and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,

June 19-23, 2017, pages 537–550, 2017.

[101] Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for Maximal Independent

Set and other problems. CoRR, abs/1804.01823, 2018.

[102] Manoj Gupta and Richard Peng. Fully Dynamic (1 + ε)-Approximate Matchings. In

54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-

29 October, 2013, Berkeley, CA, USA, pages 548–557, 2013.

[103] Philip Hall. On representatives of subsets. Journal of the London Mathematical Society,

1(1):26–30, 1935.

213

[104] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel Algorithm for

Maximal Matching. Inf. Process. Lett., 22(2):77–80, 1986.

[105] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings

of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013.

[106] Michael Kapralov. Space Lower Bounds for Approximating Maximum Matching in the

Edge Arrival Model. In Proceedings of the Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2021, 2021.

[107] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size

from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,

pages 734–751. SIAM, 2014.

[108] Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space

Efficient Approximation to Maximum Matching Size from Uniform Edge Samples. In

Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020,

Salt Lake City, UT, USA, January 5-8, 2020, pages 1753–1772, 2020.

[109] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation

for MapReduce. In Proceedings of the 21st annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 938–948, 2010.

[110] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A Model of Computation

for MapReduce. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages

938–948. SIAM, 2010.

[111] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within

2− ε. Journal of Computer and System Sciences, 74(3):335–349, 2008.

[112] Raimondas Kiveris, Silvio Lattanzi, Vahab S. Mirrokni, Vibhor Rastogi, and Sergei

Vassilvitskii. Connected Components in MapReduce and Beyond. In Proceedings of the

ACM Symposium on Cloud Computing, Seattle, WA, USA, November 3-5, 2014, pages

18:1–18:13. ACM, 2014. ISBN 978-1-4503-3252-1.

[113] Christof Koch. Biophysics of computation: information processing in single neurons.

Oxford university press, 2004.

214

[114] Christian Konrad. A Simple Augmentation Method for Matchings with Applications to

Streaming Algorithms. In 43rd International Symposium on Mathematical Foundations

of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 74:1–

74:16, 2018.

[115] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum Matching in Semi-

Streaming with Few Passes. CoRR, abs/1112.0184, 2011.

[116] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum Matching in Semi-

streaming with Few Passes. In Approximation, Randomization, and Combinatorial Op-

timization. Algorithms and Techniques - 15th International Workshop, APPROX 2012,

and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-

17, 2012. Proceedings, pages 231–242, 2012.

[117] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local Computation:

Lower and Upper Bounds. J. ACM, 63(2):17:1–17:44, 2016.

[118] Jakub Lacki, Vahab S. Mirrokni, and Michal Wlodarczyk. Connected Components at

Scale via Local Contractions. CoRR, abs/1807.10727, 2018.

[119] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filter-

ing: a method for solving graph problems in MapReduce. In Proceedings of the 23rd

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 85–94.

ACM, 2011. ISBN 978-1-4503-0743-7.

[120] Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique.

In ACM Symposium on Principles of Distributed Computing, PODC, pages 42–50, 2013.

[121] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset

Collection. http://snap.stanford.edu/data, June 2014.

[122] Nathan Linial. Distributive Graph Algorithms-Global Solutions from Local Data.

In Proceedings of the 28th annual Symposium on Foundations of Computer Science

(FOCS), pages 331–335, 1987.

[123] Sixue Cliff Liu, Robert E. Tarjan, and Peilin Zhong. Connected Components on a

PRAM in Log Diameter Time. In SPAA ’20: 32nd ACM Symposium on Parallelism in

Algorithms and Architectures, Virtual Event, USA, July 15-17, 2020, pages 359–369,

2020.

215

http://snap.stanford.edu/data

[124] Zvi Lotker, Boaz Patt-Shamir, and Adi Rosén. Distributed Approximate Matching.

SIAM J. Comput., 39(2):445–460, 2009.

[125] Linyuan Lu. The diameter of random massive graphs. In Proceedings of the twelfth

annual ACM-SIAM symposium on Discrete algorithms, pages 912–921. Society for In-

dustrial and Applied Mathematics, 2001.

[126] Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem.

In Proceedings of the 17th annual ACM Symposium on Theory of Computing (STOC),

pages 1–10, 1985.

[127] Alessandro Lulli, Emanuele Carlini, Patrizio Dazzi, Claudio Lucchese, and Laura Ricci.

Fast Connected Components Computation in Large Graphs by Vertex Pruning. IEEE

Trans. Parallel Distrib. Syst., 28(3):760–773, 2017.

[128] Andrew McGregor. Finding Graph Matchings in Data Streams. In 8th Interna-

tional Workshop on Approximation Algorithms for Combinatorial Optimization Prob-

lems (APPROX) and 9th International Workshop on Randomization and Computation

(RANDOM), pages 170–181, 2005.

[129] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20,

2014.

[130] Michael Mitzenmacher and Eli Upfal. Probability and computing - randomized algo-

rithms and probabilistic analysis. Cambridge University Press, 2005. ISBN 978-0-521-

83540-4.

[131] Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications.

Now Publishers Inc, 2005.

[132] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic

maximal matching. In Symposium on Theory of Computing Conference, STOC’13,

Palo Alto, CA, USA, June 1-4, 2013, pages 745–754, 2013.

[133] Huy N. Nguyen and Krzysztof Onak. Constant-Time Approximation Algorithms via

Local Improvements. In 49th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336,

2008.

216

[134] Krzysztof Nowicki and Krzysztof Onak. Dynamic Graph Algorithms with Batch Up-

dates in the Massively Parallel Computation Model. In Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January

10 - 13, 2021, pages 2939–2958, 2021.

[135] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex

cover. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC

2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464, 2010.

[136] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A Near-Optimal

Sublinear-Time Algorithm for Approximating the Minimum Vertex Cover Size. In

Rabani [141], pages 1123–1131. ISBN 978-1-61197-210-8.

[137] Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully Dynamic

MIS in Uniformly Sparse Graphs. In 45th International Colloquium on Automata,

Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic,

pages 92:1–92:14, 2018.

[138] Michal Parnas and Dana Ron. Approximating the minimum vertex cover in sublinear

time and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–

196, 2007.

[139] Michal Parnas and Dana Ron. Approximating the Minimum Vertex Cover in Sublinear

Time and a Connection to Distributed Algorithms. Theor. Comput. Sci., 381(1-3):

183–196, 2007.

[140] D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial

and Applied Mathematics, 2000.

[141] Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-

rithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, 2012. SIAM. ISBN 978-1-

61197-210-8.

[142] Vibhor Rastogi, Ashwin Machanavajjhala, Laukik Chitnis, and Anish Das Sarma. Find-

ing connected components in map-reduce in logarithmic rounds. In 29th IEEE Interna-

tional Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12,

2013, pages 50–61. IEEE Computer Society, 2013. ISBN 978-1-4673-4909-3.

[143] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits:

(On Lower Bounds for Modern Parallel Computation). In Proceedings of the 28th

217

ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilo-

mar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 1–12. ACM, 2016.

ISBN 978-1-4503-4210-0.

[144] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and Circuits: (On

Lower Bounds for Modern Parallel Computation). In Proceedings of the 28th ACM Sym-

posium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State

Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 1–12, 2016.

[145] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer Özsu.

The Ubiquity of Large Graphs and Surprising Challenges of Graph Processing. PVLDB,

11(4):420–431, 2017.

[146] Yossi Shiloach and Uzi Vishkin. An O(log n) Parallel Connectivity Algorithm. J.

Algorithms, 3(1):57–67, 1982.

[147] Shay Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In IEEE

57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 Oc-

tober 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016.

[148] J Michael Steele. An Efron-Stein Inequality for Nonsymmetric Statistics. The Annals

of Statistics, 14(2):753–758, 1986.

[149] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. Shortcutting Label

Propagation for Distributed Connected Components. In Proceedings of the Eleventh

ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina

Del Rey, CA, USA, February 5-9, 2018, pages 540–546. ACM, 2018.

[150] William T Tutte. The factorization of linear graphs. Journal of the London Mathemat-

ical Society, 1(2):107–111, 1947.

[151] Uzi Vishkin. An optimal parallel connectivity algorithm. Discrete Applied Mathematics,

9(2):197–207, 1984.

[152] Tom White. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale

(2. ed.). O’Reilly, 2011. ISBN 978-1-449-38973-4.

[153] Grigory Yaroslavtsev and Adithya Vadapalli. Massively Parallel Algorithms and Hard-

ness for Single-Linkage Clustering Under `p-Distances. In Proceedings of the 35th Inter-

national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,

218

Sweden, July 10-15, 2018, volume 80 of JMLR Workshop and Conference Proceedings,

pages 5596–5605. JMLR.org, 2018.

[154] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-time approx-

imation algorithm for maximum matchings. In Proceedings of the 41st Annual ACM

Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June

2, 2009, pages 225–234. ACM, 2009.

[155] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion

Stoica. Spark: Cluster Computing with Working Sets. In 2nd USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud), 2010.

219

	Dedication
	Content
	Acknowledgements
	Table of Contents
	Introduction
	Overview of the Computational Models
	Our Contributions

	Preliminaries
	Graph Notation and Basic Tools
	Non-graph Notation
	Probabilistic Tools

	Randomized Greedy as a Common Tool
	Definitions
	Local Simulation Oracles and Query-Complexity
	Robustness Property
	Sparsification Property

	I Massively Parallel Computation
	Massively Parallel Maximal Matching
	High Level Technical Overview
	The Degree Reduction Algorithm
	Matching Almost All High-Degree Vertices
	Analysis of the Inter-partition Degrees

	Putting Everything Together
	Maximal Matching for Bounded Arboricity Graphs

	Massively Parallel Graph Connectivity
	High-Level Overview of Techniques
	Our Connectivity Algorithm: The Roadmap

	Main Algorithm: Connectivity with O(m) + O"0365O(n) Total Space
	The Algorithm
	Analysis of Algorithm 1 – Correctness
	Analysis of Algorithm 1 – Round Complexity
	Analysis of Algorithm 1 – Implementation Details & Space

	Improving Total Space to O(m)

	II Sublinear-Time Algorithms
	Sublinear Algorithms for Matching & Vertex Cover
	Applications of thm:querycomplexity
	Our Techniques & Background on the Query-Complexity of RGMM
	Average Query-Complexity of RGMM
	Proof of lem:AL
	Proof of lem:AU

	The Final Algorithms for the Adjacency List Query Model
	Proof of thm:adjlist-multiplicative: Multiplicative Approximation
	Proof of thm:adjlist-additive: Multiplicative-Additive Approximation

	The Final Algorithm for the Adjacency Matrix Query Model

	III Dynamic Algorithms
	Fully Dynamic Maximal Independent Set
	Technical Overview
	Some Notation and Basic Tools
	Data Structures & The Algorithm
	Data Structures
	The Algorithm
	Overview of Correctness & The (Parametrized) Running Time

	An Analysis of Affected Vertices: Proof of thm:vertexA
	Handling Likely Permutations: Proof of lem:likely
	The Mapping's Structural Properties: Proof of cl:propofequalperms
	Unlikely Permutations: Proof of lem:unlikeliesareunlikely

	Fully Dynamic MIS: Putting Everything Together
	The (Concrete, Non-Parametrized) Running Time
	Deferred Proofs

	Fully Dynamic Maximal Matching
	Some Notation and Basic Tools
	The Formal Algorithm and its Analysis
	Data Structures
	The Algorithm
	Correctness & (Parametrized) Running Time
	Putting Everything Together: Proof of thm:MM
	Deferred Proofs

	Fully Dynamic Approximate Matching
	Our Techniques
	A Static Algorithm
	Approximation Factor of Algorithm 13
	Dynamic Implementation of Algorithm 13
	Tools
	Data Structures & Setup
	The Update Algorithm
	Correctness & Running Time of Update Algorithm

	Greedy Matching Size under Vertex Sampling
	Missing Proofs

	IV Streaming Algorithms
	Random-Order Streaming Matching
	Overview of Techniques
	Background and Definitions
	Bernstein's Algorithm

	Finding an Almost (23)-Approximation Early On
	Bipartite Graphs
	General Graphs

	An Improved Algorithm via Augmentation
	The Algorithm
	Proof of lem:vertex-disjoint-paths-via-T
	Proof of lem:whpluckyap

	V Conclusion and Open Problems
	Conclusion and Open Problems
	Open Problems for Massively Parallel Computation
	Connectivity Problems
	Matching

	Open Problems for Dynamic Algorithms
	Open Problems for Streaming Algorithms

	Bibliography

